中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肿瘤微环境与肝癌干细胞相互作用对肝细胞癌发生发展的影响

田堰鑫 李娜 高雷 武佳 朱英

引用本文:
Citation:

肿瘤微环境与肝癌干细胞相互作用对肝细胞癌发生发展的影响

DOI: 10.3969/j.issn.1001-5256.2023.03.032
基金项目: 

国家自然科学基金 (82274260)

利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:田堰鑫负责文献阅读及综述撰写;李娜、高雷、武佳负责提供修改意见;朱英负责课题设计拟定写作思路,指导撰写、修改文章并最后定稿。
详细信息
    通信作者:

    朱英,zhuyingsh52@126.com (ORCID: 0000-0002-0624-7974)

Influence of the interaction between tumor microenvironment and liver cancer stem cells on the development and progression of hepatocellular carcinoma

Research funding: 

National Natural Science Foundation of China (82274260)

More Information
  • 摘要: 近几年,肝癌干细胞(LCSC)被认为是肝细胞癌(HCC)治疗失败和复发的主要原因之一。许多研究已经表明LCSC是肝癌肿瘤中具有自我更新、分化和致瘤能力的一小部分细胞,它能启动HCC的发生,并影响其增殖、侵袭、转移、复发和耐药。最近以肿瘤微环境(TME)为基础的治疗已经开展,许多研究发现靶向TME的相关元素比靶向肿瘤细胞本身更具治疗价值。TME是LCSC和肝癌细胞生长的微环境,它与LCSC相互作用,发挥协同效应,对HCC的发生发展起着积极作用。本文介绍了TME中的各种细胞成分和非细胞成分如何与LCSC相互作用,调节肝癌的发生、发展。此外,还描述了TME中主要成分与LCSC相关联的一些分子靶点及治疗方法或药物,以期能在它们的基础上寻求更安全、更有效的HCC靶向治疗方法。

     

  • 图  1  肿瘤微环境与肝癌干细胞相互作用而影响肝细胞癌的发生和发展

    注:COMP,软骨寡聚基质蛋白。

    Figure  1.  Tumor microenvironment interacts with the liver cancer stem cells to influence the occurrence and development of hepatocellular carcinoma

    表  1  肿瘤微环境的细胞成分和非细胞成分与肝癌干细胞的作用机制及对HCC的影响

    Table  1.   The mechanism of cellular and non-cellular components of tumor microenvironment with the liver cancer stem cells and their effect on HCC

    分类 作用机制 功能
    非细胞成分
      ECM (1)ECM重塑和HA增加LCSC干性标志物CD44、CD133的表达[5-7]
    (2)FN影响LCSC细胞间通讯[7]
    促HCC的增殖、侵袭、转移、耐药
      细胞外调控分子 (1)HIF:协同ECM重塑、肿瘤新生血管网和EMT激活Notch信号通路,促LCSC生成、维持、干性特点、化学抗性和治疗抵抗[2, 8-13]
    (2)TGFβ:BMP4、BMP9和EMT激活TGFβ信号通路,促进CD133和EPCAM的表达,改变LCSC恶性表型,促其分化[12, 14-17]
    (3)其他细胞外调控分子:a, OSM激活STAT3信号通路,介导LCSC分化[12, 18];b, MMP-2和MMP-9增强LCSC的自我更新和化学抗性[19-20]
    促HCC的发生、侵袭、转移和耐药
      EV (1)miR-125b、miR-130、miR-155、Kras mRNA参与CSC重编程;miRNA-181激活Wnt/β-catenin信号通路,增加miRNA-130b和lncTCF7的表达,促LCSC自我更新、分化、干性、恶性表型转化[22-27]
    (2)Gankyrin激活PI3K/AKT信号通路,促LCSC增殖和化疗抗性[16, 28]
    (3)递送治疗药物,miR-21和miR-9-3p作为HCC诊断和预后判断标准[22, 25]
    促HCC的发生、增殖、凋亡、耐药
      其他环境因素 通过LCSC发挥促瘤作用[29]
    细胞成分
      内皮细胞与血管网络 分泌IL-17A上调PD-L1,分泌HIF、VEGF和TGFβ增加LOXL2的表达,诱导EMT和VM的形成,协同ECM重塑,促LCSC自我更新、干性和化学抗性[5, 31-33] 促HCC发生、转移
      免疫细胞 (1)TAM释放VEGF、MMP、分泌蛋白S100A9、TGFβ和TNF,激活IL-6/STAT3信号通路,与肿瘤新生血管协同,改变LCSC表型和功能[2, 6, 12, 36]
    (2)TAN分泌BMP2和TGFβ来诱导LCSC的产生[37]
    (3)树突状细胞和T淋巴细胞促LCSC的维持和免疫逃逸[6, 12]
    促HCC的发生、侵袭、转移
      CAF 分泌多种因子,介导ECM重塑,激活TGFβ、Hedgehog、STAT3等信号通路,促进LCSC干性、恶性表型转化[6, 29] 促HCC侵袭、转移
      其他细胞 通过LCSC发挥促瘤作用[6, 38-41]
    注:HIF,缺氧诱导因子;BMP,骨形态发生蛋白;MMP,基质金属蛋白酶;lncTCF7, 长链非编码转录因子7;PD-L1, 程序性死亡受体-配体1;TAM,肿瘤相关巨噬细胞;TAN,肿瘤相关中性粒细胞。
    下载: 导出CSV

    表  2  肿瘤微环境各成分和LCSC相关联的分子靶点、治疗方法或药物

    Table  2.   Molecular targets, therapeutic methods or drugs associated with various components of the tumor microenvironment and the LCSC

    分子靶点 治疗方法或药物 TME各成分靶点对LCSC的作用
    ECM 胶原蛋白参与ECM重塑导致LCSC干性标志物CD44、CD133表达的增加;FN影响LCSC细胞间通讯[5-7, 42-43]
      胶原蛋白 吡格列酮
      CD44 抗CD44抗体; miR-199a-3p
      CD133 MV-141.7;MV-AC133
      FNR 抗整合素α4β1抗体
    HIF 内皮细胞分泌HIF-1α对LCSC的恶性改变起支持作用;Akt/HIF-1α/PDGF自分泌环增强LCSC的化学抗性[2, 5, 8-13, 44-45]
      HIF-1α HDAC6特异性抑制剂
      PDGFR 索拉非尼; 仑伐替尼; 瑞戈非尼
    TGFβ siRNA; 吡非尼酮; 氟非尼酮 TGFβ和BMP导致LCSC干性标志物CD133、EPCAM表达的增加[12, 14-17, 42, 46-48]
      BMP DMH1
      EpCAM VB4-845;Edrecolomab; RNAi
    其他细胞外调控分子 IL-6、MMP和TIMP对LCSC的恶性改变起支持作用[12, 18-20, 42]
      IL-6 阿司匹林
      MMP FR(EtOH)
      TIMP 常山酮
    EV 载药RBC-EV EV、Wnt/β-catenin信号和lncTCF7对LCSC的恶性改变起支持作用[22-27, 42-43]
      Wnt/β-catenin siRNA
      lncTCF7 -
    其他环境因素 缺氧、氧化应激和自噬LCSC的恶性改变起支持作用[29, 42-43, 49-50]
      缺氧 Evofosfamide (TH-302);DS-PLGA
      氧化应激 Oroxylin A; 甲基阿魏酸
      自噬 3-甲基腺嘌呤; 巴弗洛霉素A1
    内皮细胞/血管 阿替利珠单抗 内皮细胞通过PD-L1、HIF-1α、VEGF和LOXL2对LCSC的恶性改变起支持作用[5, 31-33, 42, 44-47]
      PD-L1 HDAC6特异性抑制剂
      HIF-1α
      VEGF 贝伐珠单抗
      VEGFR 索拉非尼; 仑伐替尼; 瑞戈非尼; 卡博替尼
      LOXL2 辛妥珠单抗
      TGFβ siRNA; 吡非尼酮; 氟非尼酮
    免疫细胞 TAM通过分泌VEGF、MMP、TGFβ和TNF激活IL-6/STAT3信号通路对LCSC的恶性改变起支持作用;而TAN通过BMP2和TGFβ对LCSC的恶性改变起支持作用[2, 6, 12, 36-37, 42, 45-49]
      TAM 索拉非尼
      VEGF 贝伐珠单抗
      MMP FR(EtOH)
      TGFβ siRNA; 吡非尼酮; 氟非尼酮
      TNF 阿司匹林
      IL-6 阿司匹林
      STAT 利匹韦林
      BMP DMH1
    CAF CAF分泌胶原蛋白、TGFβ、CCL2、CCL5和IL6参激活TGFβ和STAT3信号通路对LCSC的恶性改变起支持作用[6, 42, 46-47, 51]
      TGFβ 吡非尼酮; 氟非尼酮
      STAT 利匹韦林
      胶原蛋白 吡格列酮
      CCR2/5 Cenicriviroc
      CCR5 Met-CCL5
      IL-6 阿司匹林
    注:FNR,纤连蛋白受体;HIF,缺氧诱导因子;PDGF/PDGFR,血小板衍生生长因子及受体;RNAi,RNA干扰;siRNA,小干扰RNA;TIMP,金属蛋白酶组织抑制剂;RBC-EV,红细胞释放的细胞外囊泡;VEGF /VEGFR,血管内皮生长因子及受体;CCR2/5,CCL2/5的受体。
    下载: 导出CSV
  • [1] RUTHERFORD MJ, ARNOLD M, BARDOT A, et al. Comparison of liver cancer incidence and survival by subtypes across seven high-income countries[J]. Int J Cancer, 2021, 149(12): 2020-2031. DOI: 10.1002/ijc.33767.
    [2] LV D, CHEN L, DU L, et al. Emerging regulatory mechanisms involved in liver cancer stem cell properties in hepatocellular carcinoma[J]. Front Cell Dev Biol, 2021, 9: 691410. DOI: 10.3389/fcell.2021.691410.
    [3] ZHENG X, YU C, XU M. Linking tumor microenvironment to plasticity of cancer stem cells: mechanisms and application in cancer therapy[J]. Front Oncol, 2021, 11: 678333. DOI: 10.3389/fonc.2021.678333.
    [4] TONTI OR, LARSON H, LIPP SN, et al. Tissue-specific parameters for the design of ECM-mimetic biomaterials[J]. Acta Biomater, 2021, 132: 83-102. DOI: 10.1016/j.actbio.2021.04.017.
    [5] YE J, WU D, WU P, et al. The cancer stem cell niche: cross talk between cancer stem cells and their microenvironment[J]. Tumour Biol, 2014, 35(5): 3945-3951. DOI: 10.1007/s13277-013-1561-x.
    [6] LAM KH, MA S. Noncellular components in the liver cancer stem cell niche: Biology and potential clinical implications[J]. Hepatology, 2022. DOI: 10.1002/hep.32629. [Online ahead of print]
    [7] KAPLAN RN, RIBA RD, ZACHAROULIS S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche[J]. Nature, 2005, 438(7069): 820-827. DOI: 10.1038/nature04186.
    [8] ZHENG N, ZHANG S, WU W, et al. Regulatory mechanisms and therapeutic targeting of vasculogenic mimicry in hepatocellular carcinoma[J]. Pharmacol Res, 2021, 166: 105507. DOI: 10.1016/j.phrs.2021.105507.
    [9] GUO Y, XIAO Z, YANG L, et al. Hypoxia-inducible factors in hepatocellular carcinoma (Review)[J]. Oncol Rep, 2020, 43(1): 3-15. DOI: 10.3892/or.2019.7397.
    [10] BORT A, SÁNCHEZ BG, MATEOS-GÓMEZ PA, et al. Targeting AMP-activated kinase impacts hepatocellular cancer stem cells induced by long-term treatment with sorafenib[J]. Mol Oncol, 2019, 13(5): 1311-1331. DOI: 10.1002/1878-0261.12488.
    [11] JING L, RUAN Z, SUN H, et al. Epithelial-mesenchymal transition induced cancer-stem-cell-like characteristics in hepatocellular carcinoma[J]. J Cell Physiol, 2019, 234(10): 18448-18458. DOI: 10.1002/jcp.28480.
    [12] CHENG Z, LI X, DING J. Characteristics of liver cancer stem cells and clinical correlations[J]. Cancer Lett, 2016, 379(2): 230-238. DOI: 10.1016/j.canlet.2015.07.041.
    [13] PATIL SM, SAWANT SS, KUNDA NK. Exosomes as drug delivery systems: A brief overview and progress update[J]. Eur J Pharm Biopharm, 2020, 154: 259-269. DOI: 10.1016/j.ejpb.2020.07.026.
    [14] CHEN H, NIO K, YAMASHITA T, et al. BMP9-ID1 signaling promotes EpCAM-positive cancer stem cell properties in hepatocellular carcinoma[J]. Mol Oncol, 2021, 15(8): 2203-2218. DOI: 10.1002/1878-0261.12963.
    [15] MODI SJ, KULKARNI VM. Discovery of VEGFR-2 inhibitors exerting significant anticancer activity against CD44+ and CD133+ cancer stem cells (CSCs): Reversal of TGFβ induced epithelial-mesenchymal transition (EMT) in hepatocellular carcinoma[J]. Eur J Med Chem, 2020, 207: 112851. DOI: 10.1016/j.ejmech.2020.112851.
    [16] FUJITA J, SAKURAI T. The oncoprotein gankyrin/PSMD10 as a target of cancer therapy[J]. Adv Exp Med Biol, 2019, 1164: 63-71. DOI: 10.1007/978-3-030-22254-3_5.
    [17] JAFERIAN S, SOLEYMANINEJAD M, NEGAHDARI B, et al. Stem cell, biomaterials and growth factors therapy for hepatocellular carcinoma[J]. Biomed Pharmacother, 2017, 88: 1046-1053. DOI: 10.1016/j.biopha.2017.01.154.
    [18] YAMASHITA T, HONDA M, NIO K, et al. Oncostatin m renders epithelial cell adhesion molecule-positive liver cancer stem cells sensitive to 5-Fluorouracil by inducing hepatocytic differentiation[J]. Cancer Res, 2010, 70(11): 4687-4697. DOI: 10.1158/0008-5472.CAN-09-4210.
    [19] ZHENG W, YAO M, WU M, et al. Secretory clusterin promotes hepatocellular carcinoma progression by facilitating cancer stem cell properties via AKT/GSK-3β/β-catenin axis[J]. J Transl Med, 2020, 18(1): 81. DOI: 10.1186/s12967-020-02262-7.
    [20] CHEN L, CHENG MM, LI YP, et al. 4, 4'-Bond secalonic acid D targets SP cells and inhibits metastasis in hepatocellular carcinoma[J]. Mol Med Rep, 2020, 21(6): 2624-2632. DOI: 10.3892/mmr.2020.11055.
    [21] EGUCHI T, SHETA M, FUJⅡ M, et al. Cancer extracellular vesicles, tumoroid models, and tumor microenvironment[J]. Semin Cancer Biol, 2022, 86(Pt 1): 112-126. DOI: 10.1016/j.semcancer.2022.01.003.
    [22] ZHANG G, HUANG X, XIU H, et al. Extracellular vesicles: Natural liver-accumulating drug delivery vehicles for the treatment of liver diseases[J]. J Extracell Vesicles, 2020, 10(2): e12030. DOI: 10.1002/jev2.12030.
    [23] BORRELLI DA, YANKSON K, SHUKLA N, et al. Extracellular vesicle therapeutics for liver disease[J]. J Control Release, 2018, 273: 86-98. DOI: 10.1016/j.jconrel.2018.01.022.
    [24] AFIFY SM, HASSAN G, YAN T, et al. Cancer stem cell initiation by tumor-derived extracellular vesicles[J]. Methods Mol Biol, 2022, 2549: 399-407. DOI: 10.1007/7651_2021_371.
    [25] WANG H, LU Z, ZHAO X. Tumorigenesis, diagnosis, and therapeutic potential of exosomes in liver cancer[J]. J Hematol Oncol, 2019, 12(1): 133. DOI: 10.1186/s13045-019-0806-6.
    [26] JI J, YAMASHITA T, BUDHU A, et al. Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells[J]. Hepatology, 2009, 50(2): 472-480. DOI: 10.1002/hep.22989.
    [27] YUAN SX, WANG J, YANG F, et al. Long noncoding RNA DANCR increases stemness features of hepatocellular carcinoma by derepression of CTNNB1[J]. Hepatology, 2016, 63(2): 499-511. DOI: 10.1002/hep.27893.
    [28] LI N. The study on fuction and molecular mechanism of p28~(Gank)、IRAKI in macrophage and HCC[D]. Shanghai: Shanghai Jiao Tong University, 2015. DOI: 10.27307/d.cnki.gsjtu.2015.000503.

    李宁. p28~(Gank)、IRAK1在巨噬细胞以及肝癌中的功能及机制研究[D]. 上海: 上海交通大学, 2015. DOI: 10.27307/d.cnki.gsjtu.2015.000503.
    [29] ZHAO Z, BAI S, WANG R, et al. Cancer-associated fibroblasts endow stem-like qualities to liver cancer cells by modulating autophagy[J]. Cancer Manag Res, 2019, 11: 5737-5744. DOI: 10.2147/CMAR.S197634.
    [30] LUO Q, WANG J, ZHAO W, et al. Vasculogenic mimicry in carcinogenesis and clinical applications[J]. J Hematol Oncol, 2020, 13(1): 19. DOI: 10.1186/s13045-020-00858-6.
    [31] ARVANITAKIS K, KOLETSA T, MITROULIS I, et al. Tumor-associated macrophages in hepatocellular carcinoma pathogenesis, prognosis and therapy[J]. Cancers (Basel), 2022, 14(1): 226. DOI: 10.3390/cancers14010226.
    [32] ZHAO X, SUN B, LIU T, et al. Long noncoding RNA n339260 promotes vasculogenic mimicry and cancer stem cell development in hepatocellular carcinoma[J]. Cancer Sci, 2018, 109(10): 3197-3208. DOI: 10.1111/cas.13740.
    [33] DONGRE A, WEINBERG RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer[J]. Nat Rev Mol Cell Biol, 2019, 20(2): 69-84. DOI: 10.1038/s41580-018-0080-4.
    [34] YU LX, LING Y, WANG HY. Role of nonresolving inflammation in hepatocellular carcinoma development and progression[J]. NPJ Precis Oncol, 2018, 2(1): 6. DOI: 10.1038/s41698-018-0048-z.
    [35] SETLAI BP, HULL R, BIDA M, et al. Immunosuppressive signaling pathways as targeted cancer therapies[J]. Biomedicines, 2022, 10(3): 682. DOI: 10.3390/biomedicines10030682.
    [36] WEI R, ZHU WW, YU GY, et al. S100 calcium-binding protein A9 from tumor-associated macrophage enhances cancer stem cell-like properties of hepatocellular carcinoma[J]. Int J Cancer, 2021, 148(5): 1233-1244. DOI: 10.1002/ijc.33371.
    [37] MANIOTIS AJ, FOLBERG R, HESS A, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry[J]. Am J Pathol, 1999, 155(3): 739-752. DOI: 10.1016/S0002-9440(10)65173-5.
    [38] HANAHAN D, COUSSENS LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment[J]. Cancer Cell, 2012, 21(3): 309-322. DOI: 10.1016/j.ccr.2012.02.022.
    [39] BALKWILL FR, CAPASSO M, HAGEMANN T. The tumor microenvironment at a glance[J]. J Cell Sci, 2012, 125(Pt 23): 5591-5596. DOI: 10.1242/jcs.116392.
    [40] EGGERT T, GRETEN TF. Tumor regulation of the tissue environment in the liver[J]. Pharmacol Ther, 2017, 173: 47-57. DOI: 10.1016/j.pharmthera.2017.02.005.
    [41] CHEN A, XU C, LUO Y, et al. Disruption of crosstalk between LX-2 and liver cancer stem-like cells from MHCC97H cells by DFOG via inhibiting FOXM1[J]. Acta Biochim Biophys Sin (Shanghai), 2019, 51(12): 1267-1275. DOI: 10.1093/abbs/gmz129.
    [42] TAN Z, SUN H, XUE T, et al. Liver fibrosis: therapeutic targets and advances in drug therapy[J]. Front Cell Dev Biol, 2021, 9: 730176. DOI: 10.3389/fcell.2021.730176.
    [43] WANG N, WANG S, LI MY, et al. Cancer stem cells in hepatocellular carcinoma: an overview and promising therapeutic strategies[J]. Ther Adv Med Oncol, 2018, 10: 1758835918816287. DOI: 10.1177/1758835918816287.
    [44] ZHOU W, YANG J, SAREN G, et al. HDAC6-specific inhibitor suppresses Th17 cell function via the HIF-1α pathway in acute lung allograft rejection in mice[J]. Theranostics, 2020, 10(15): 6790-6805. DOI: 10.7150/thno.44961.
    [45] LLOVET JM, KELLEY RK, VILLANUEVA A, et al. Hepatocellular carcinoma[J]. Nat Rev Dis Primers, 2021, 7(1): 6. DOI: 10.1038/s41572-020-00240-3.
    [46] SALAH MM, ASHOUR AA, ABDELGHANY TM, et al. Pirfenidone alleviates concanavalin A-induced liver fibrosis in mice[J]. Life Sci, 2019, 239: 116982. DOI: 10.1016/j.lfs.2019.116982.
    [47] PENG Y, LI L, ZHANG X, et al. Fluorofenidone affects hepatic stellate cell activation in hepatic fibrosis by targeting the TGF-β1/Smad and MAPK signaling pathways[J]. Exp Ther Med, 2019, 18(1): 41-48. DOI: 10.3892/etm.2019.7548.
    [48] STRAIGN DM, IHLE CL, PROVERA MD, et al. Targeting the BMP pathway in prostate cancer induced bone disease[J]. Front Endocrinol (Lausanne), 2021, 12: 769316. DOI: 10.3389/fendo.2021.769316.
    [49] KUMARI S, ADVANI D, SHARMA S, et al. Combinatorial therapy in tumor microenvironment: Where do we stand?[J]. Biochim Biophys Acta Rev Cancer, 2021, 1876(2): 188585. DOI: 10.1016/j.bbcan.2021.188585.
    [50] CHENG Q, LI C, YANG CF, et al. Methyl ferulic acid attenuates liver fibrosis and hepatic stellate cell activation through the TGF-β1/Smad and NOX4/ROS pathways[J]. Chem Biol Interact, 2019, 299: 131-139. DOI: 10.1016/j.cbi.2018.12.006.
    [51] FRIEDMAN SL, RATZIU V, HARRISON SA, et al. A randomized, placebo-controlled trial of cenicriviroc for treatment of nonalcoholic steatohepatitis with fibrosis[J]. Hepatology, 2018, 67(5): 1754-1767. DOI: 10.1002/hep.29477.
    [52] RATAJCZAK MZ, RATAJCZAK J. Extracellular microvesicles/exosomes: discovery, disbelief, acceptance, and the future?[J]. Leukemia, 2020, 34(12): 3126-3135. DOI: 10.1038/s41375-020-01041-z.
  • 加载中
图(1) / 表(2)
计量
  • 文章访问数:  695
  • HTML全文浏览量:  233
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-11
  • 录用日期:  2022-09-30
  • 出版日期:  2023-03-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回