中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

干细胞衍生的外泌体在肝脏疾病治疗中的作用

王卓然 朱冰 余丽梅 游绍莉

引用本文:
Citation:

干细胞衍生的外泌体在肝脏疾病治疗中的作用

DOI: 10.3969/j.issn.1001-5256.2023.03.034
基金项目: 

首都特色重点课题 (Z151100004015019);

国家科技重大专项项目 (2017ZX10203201-004)

利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:游绍莉、王卓然负责论文起草与撰写;游绍莉、朱冰负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    余丽梅,ylm720@sina.com (ORCID: 0000-0002-3377-1202)

    游绍莉, youshaoli1972@163.com (ORCID: 0000-0001-8689-8509)

Role of stem cell-derived exosomes in treatment of liver diseases

Research funding: 

Capital Clinical Characteristic Application Research on Funded Projects (Z151100004015019);

National Foundation for Science and Technology Development (2017ZX10203201-004)

More Information
  • 摘要: 肝脏容易受多种病因影响发生肝损伤,严重情况下可引起其合成、解毒、代谢和生物转化等功能发生障碍,当前针对肝衰竭、失代偿性肝硬化等终末期肝病仍缺乏高效的临床治疗手段。近年来间充质干细胞的临床疗效已被证实,基于干细胞外泌体的相关治疗成为研究热点。本文介绍了干细胞外泌体治疗的优势、机制研究进展、临床前研究现状等。从目前研究结果来看,干细胞衍生的外泌体治疗肝脏疾病具有良好应用前景,但临床前研究仍需进一步深入,临床研究有待开展。

     

  • 图  1  干细胞外泌体治疗肝脏疾病相关机制示意图

    Figure  1.  The function of stem cells-derived exosomes in the treatment of liver diseases

    图  2  干细胞外泌体相关临床治疗性研究(https://clinicaltrials.gov/)

    Figure  2.  Clinical therapeutic studies of stem cells-derived exosomes(https://clinicaltrials.gov/)

    表  1  干细胞外泌体治疗肝脏疾病的实验研究

    Table  1.   Experimental studies of stem cells-derived exosomes in the treatment of liver diseases

    外泌体来源 重要活性因子 疾病模型 动物/细胞 结果
    BMSC-Exo - LO2细胞损伤 LO2细胞 促进自噬,减少肝细胞凋亡[32]
    BMSC-Exo MIP2、IL-6、Y-RNA-1 暴发性肝衰竭 C57BL/6小鼠 减轻炎症反应,提高存活率[33]
    BMSC-Exo PPARγ、β-catenin等 肝纤维化 Sprague-Dawley大鼠 抑制Wnt/β-catenin信号通路,减轻纤维化程度,抑制炎症,促进肝细胞再生[34]
    BMSC-Exo miR223-3p 自身免疫性肝炎 C57BL/6小鼠 调节STAT3相关信号通路,抑制炎性细胞因子释放,减轻炎症反应[35]
    AMSC-Exo miR-17 ALF C57BL/6小鼠 靶向TXNIP,抑制炎症反应,改善肝损伤[36]
    AMSC-EV - NASH Mc4r-KO小鼠 减轻炎症反应并抑制纤维化[15]
    AMSC-EV lncRNA H19 ALF Sprague-Dawley大鼠 减轻炎症反应,促进肝细胞的增殖、抑制凋亡[37]
    ucMSC-Exo - ALF C57BL/6小鼠、LO2细胞 激活IGF-1R/PI3K/AKT和ERK1/2信号通路,减少氧化应激、抑制细胞凋亡[38]
    ucMSC-Exo GPX1 急性肝损伤 BALB/c-nu/nu小鼠 抑制IKKB/NF-κB/caspase3/9通路,减少氧化应激、抑制细胞凋亡[24]
    MenSC-Exo ICAM-1、血管生成素-2、Axl 爆发性肝衰竭 C57BL/6小鼠 抑制caspase-3的表达,减少细胞凋亡,降低病死率[39]
      注:MIP2,巨噬细胞炎性蛋白2;PPARγ,过氧化物酶体增殖物激活受体γ;ALF,急性肝衰竭;GPX1,谷胱甘肽过氧化物酶1;ICAM,细胞间黏附分子;MenSC-Exo,经血来源间充质干细胞外泌体。
    下载: 导出CSV

    表  2  培养环境变化对干细胞外泌体治疗肝脏疾病影响的实验研究

    Table  2.   Studies on the influence of different culture environments on stem cell-derived exosomes for liver diseases

    外泌体来源 预处理方式 模型 动物/细胞 结果
    ucMSC-Exo TNFα ALF C57BL/6小鼠 抑制NLRP3信号通路,抑制炎症反应[40]
    ucMSC-Exo IL-6 急性肝损伤 C57BL/6小鼠 减轻巨噬细胞浸润和局部肝损伤,改善肝脏组织形态和全身疾病[19]
    AMCS-EV IFNγ 肝硬化 C57BL/6小鼠 减轻炎症反应,抑制肝纤维化[16]
    AMSC-CM 低氧 部分肝切除 BALB/c小鼠 促进肝再生、抑制促炎细胞因子和降低异常升高的肝酶[22]
    AMSC-CM IFNγ 缺血再灌注 M1型巨噬细胞和THLE-2细胞 阻断caspase3/7的激活,抑制炎症反应和细胞凋亡[17]
    BMSC-CM 低氧 ALF BaLb小鼠 减轻ALF的损伤程度,抗炎、抗氧化[25]
    BMSC-CM 肝细胞共培养 ALF Sprague-Dawley大鼠、L02细胞 增强细胞活力,促进肝脏结构恢复[41]
      注:NLRP3,NOD样受体热蛋白结构域相关蛋白3。
    下载: 导出CSV
  • [1] BARTUNEK J, BEHFAR A, DOLATABADI D, et al. Cardiopoietic stem cell therapy in heart failure: the C-CURE (Cardiopoietic stem Cell therapy in heart failURE) multicenter randomized trial with lineage-specified biologics[J]. J Am Coll Cardiol, 2013, 61(23): 2329-2338. DOI: 10.1016/j.jacc.2013.02.071.
    [2] SILVA JD, LOPES-PACHECO M, PAZ A, et al. Mesenchymal stem cells from bone marrow, adipose tissue, and lung tissue differentially mitigate lung and distal organ damage in experimental acute respiratory distress syndrome[J]. Crit Care Med, 2018, 46(2): e132-e140. DOI: 10.1097/CCM.0000000000002833.
    [3] SUK KT, YOON JH, KIM MY, et al. Transplantation with autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: Phase 2 trial[J]. Hepatology, 2016, 64(6): 2185-2197. DOI: 10.1002/hep.28693.
    [4] JAIBAJI M, JAIBAJI R, VOLPIN A. Mesenchymal stem cells in the treatment of cartilage defects of the knee: A systematic review of the clinical outcomes[J]. Am J Sports Med, 2021, 49(13): 3716-3727. DOI: 10.1177/0363546520986812.
    [5] CHRIST B, BRVCKNER S, WINKLER S. The Therapeutic promise of mesenchymal stem cells for liver restoration[J]. Trends Mol Med, 2015, 21(11): 673-686. DOI: 10.1016/j.molmed.2015.09.004.
    [6] KALLURI R, LEBLEU VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977. DOI: 10.1126/science.aau6977.
    [7] PAN BT, JOHNSTONE RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor[J]. Cell, 1983, 33(3): 967-978. DOI: 10.1016/0092-8674(83)90040-5.
    [8] PEGTEL DM, GOULD SJ. Exosomes[J]. Annu Rev Biochem, 2019, 88: 487-514. DOI: 10.1146/annurev-biochem-013118-111902.
    [9] RANI S, RYAN AE, GRIFFIN MD, et al. Mesenchymal stem cell-derived extracellular vesicles: Toward cell-free therapeutic applications[J]. Mol Ther, 2015, 23(5): 812-823. DOI: 10.1038/mt.2015.44.
    [10] THÉRY C, WITWER KW, AIKAWA E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines[J]. J Extracell Vesicles, 2018, 7(1): 1535750. DOI: 10.1080/20013078.2018.1535750.
    [11] MELDOLESI J. Exosomes and ectosomes in intercellular communication[J]. Curr Biol, 2018, 28(8): R435-R444. DOI: 10.1016/j.cub.2018.01.059.
    [12] TSUCHIYA A, KOJIMA Y, IKARASHI S, et al. Clinical trials using mesenchymal stem cells in liver diseases and inflammatory bowel diseases[J]. Inflamm Regen, 2017, 37: 16. DOI: 10.1186/s41232-017-0045-6.
    [13] BORRELLI DA, YANKSON K, SHUKLA N, et al. Extracellular vesicle therapeutics for liver disease[J]. J Control Release, 2018, 273: 86-98. DOI: 10.1016/j.jconrel.2018.01.022.
    [14] RONG X, LIU J, YAO X, et al. Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis through the Wnt/β-catenin pathway[J]. Stem Cell Res Ther, 2019, 10(1): 98. DOI: 10.1186/s13287-019-1204-2.
    [15] WATANABE T, TSUCHIYA A, TAKEUCHI S, et al. Development of a non-alcoholic steatohepatitis model with rapid accumulation of fibrosis, and its treatment using mesenchymal stem cells and their small extracellular vesicles[J]. Regen Ther, 2020, 14: 252-261. DOI: 10.1016/j.reth.2020.03.012.
    [16] TAKEUCHI S, TSUCHIYA A, IWASAWA T, et al. Small extracellular vesicles derived from interferon-γ pre-conditioned mesenchymal stromal cells effectively treat liver fibrosis[J]. NPJ Regen Med, 2021, 6(1): 19. DOI: 10.1038/s41536-021-00132-4.
    [17] ZITO G, MICELI V, CARCIONE C, et al. Human amnion-derived mesenchymal stromal/stem cells pre-conditioning inhibits inflammation and apoptosis of immune and parenchymal cells in an in vitro model of liver ischemia/reperfusion[J]. Cells, 2022, 11(4): 709. DOI: 10.3390/cells11040709.
    [18] LIU Y, LOU G, LI A, et al. AMSC-derived exosomes alleviate lipopolysaccharide/d-galactosamine-induced acute liver failure by miR-17-mediated reduction of TXNIP/NLRP3 inflammasome activation in macrophages[J]. EBioMedicine, 2018, 36: 140-150. DOI: 10.1016/j.ebiom.2018.08.054.
    [19] SHAO M, XU Q, WU Z, et al. Exosomes derived from human umbilical cord mesenchymal stem cells ameliorate IL-6-induced acute liver injury through miR-455-3p[J]. Stem Cell Res Ther, 2020, 11(1): 37. DOI: 10.1186/s13287-020-1550-0.
    [20] FAN Y, HERR F, VERNOCHET A, et al. Human fetal liver mesenchymal stem cell-derived exosomes impair natural killer cell function[J]. Stem Cells Dev, 2019, 28(1): 44-55. DOI: 10.1089/scd.2018.0015.
    [21] GUO L, LAI P, WANG Y, et al. Extracellular vesicles derived from mesenchymal stem cells prevent skin fibrosis in the cGVHD mouse model by suppressing the activation of macrophages and B cells immune response[J]. Int Immunopharmacol, 2020, 84: 106541. DOI: 10.1016/j.intimp.2020.106541.
    [22] LEE SC, JEONG HJ, LEE SK, et al. Hypoxic conditioned medium from human adipose-derived stem cells promotes mouse liver regeneration through JAK/STAT3 signaling[J]. Stem Cells Transl Med, 2016, 5(6): 816-825. DOI: 10.5966/sctm.2015-0191.
    [23] TAN CY, LAI RC, WONG W, et al. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models[J]. Stem Cell Res Ther, 2014, 5(3): 76. DOI: 10.1186/scrt465.
    [24] YAN Y, JIANG W, TAN Y, et al. hucMSC exosome-derived GPX1 is required for the recovery of hepatic oxidant injury[J]. Mol Ther, 2017, 25(2): 465-479. DOI: 10.1016/j.ymthe.2016.11.019.
    [25] TEMNOV A, ROGOV K, ZHALIMOV V, et al. The effect of a mesenchymal stem cell conditioned medium fraction on morphological characteristics of hepatocytes in acetaminophen-induced acute liver failure: a preliminary study[J]. Hepat Med, 2019, 11: 89-96. DOI: 10.2147/HMER.S196354.
    [26] HONG HE, KIM OH, KWAK BJ, et al. Antioxidant action of hypoxic conditioned media from adipose-derived stem cells in the hepatic injury of expressing higher reactive oxygen species[J]. Ann Surg Treat Res, 2019, 97(4): 159-167. DOI: 10.4174/astr.2019.97.4.159.
    [27] SUN C, SHI C, DUAN X, et al. Exosomal microRNA-618 derived from mesenchymal stem cells attenuate the progression of hepatic fibrosis by targeting Smad4[J]. Bioengineered, 2022, 13(3): 5915-5927. DOI: 10.1080/21655979.2021.2023799.
    [28] ÁLVAREZ-VIEJO M. Mesenchymal stem cells from different sources and their derived exosomes: A pre-clinical perspective[J]. World J Stem Cells, 2020, 12(2): 100-109. DOI: 10.4252/wjsc.v12.i2.100.
    [29] LOU G, CHEN Z, ZHENG M, et al. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases[J]. Exp Mol Med, 2017, 49(6): e346. DOI: 10.1038/emm.2017.63.
    [30] PIRES AO, MENDES-PINHEIRO B, TEIXEIRA FG, et al. Unveiling the differences of secretome of human bone marrow mesenchymal stem cells, adipose tissue-derived stem cells, and human umbilical cord perivascular cells: a proteomic analysis[J]. Stem Cells Dev, 2016, 25(14): 1073-1083. DOI: 10.1089/scd.2016.0048.
    [31] WANG ZG, HE ZY, LIANG S, et al. Comprehensive proteomic analysis of exosomes derived from human bone marrow, adipose tissue, and umbilical cord mesenchymal stem cells[J]. Stem Cell Res Ther, 2020, 11(1): 511. DOI: 10.1186/s13287-020-02032-8.
    [32] ZHAO S, LIU Y, PU Z. Bone marrow mesenchymal stem cell-derived exosomes attenuate D-GaIN/LPS-induced hepatocyte apoptosis by activating autophagy in vitro[J]. Drug Des Devel Ther, 2019, 13: 2887-2897. DOI: 10.2147/DDDT.S220190.
    [33] HAGA H, YAN IK, TAKAHASHI K, et al. Extracellular vesicles from bone marrow-derived mesenchymal stem cells improve survival from lethal hepatic failure in mice[J]. Stem Cells Transl Med, 2017, 6(4): 1262-1272. DOI: 10.1002/sctm.16-0226.
    [34] RONG X, LIU J, YAO X, et al. Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis through the Wnt/β-catenin pathway[J]. Stem Cell Res Ther, 2019, 10(1): 98. DOI: 10.1186/s13287-019-1204-2.
    [35] LU FB, CHEN DZ, CHEN L, et al. Attenuation of experimental autoimmune hepatitis in mice with bone mesenchymal stem cell-derived exosomes carrying MicroRNA-223-3p[J]. Mol Cells, 2019, 42(12): 906-918. DOI: 10.14348/molcells.2019.2283.
    [36] LIU Y, LOU G, LI A, et al. AMSC-derived exosomes alleviate lipopolysaccharide/d-galactosamine-induced acute liver failure by miR-17-mediated reduction of TXNIP/NLRP3 inflammasome activation in macrophages[J]. EBioMedicine, 2018, 36: 140-150. DOI: 10.1016/j.ebiom.2018.08.054.
    [37] JIN Y, WANG J, LI H, et al. Extracellular vesicles secreted by human adipose-derived stem cells (hASCs) improve survival rate of rats with acute liver failure by releasing lncRNA H19[J]. EBioMedicine, 2018, 34: 231-242. DOI: 10.1016/j.ebiom.2018.07.015.
    [38] WU HY, ZHANG XC, JIA BB, et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate acetaminophen-induced acute liver failure through activating ERK and IGF-1R/PI3K/AKT signaling pathway[J]. J Pharmacol Sci, 2021, 147(1): 143-155. DOI: 10.1016/j.jphs.2021.06.008.
    [39] CHEN L, XIANG B, WANG X, et al. Exosomes derived from human menstrual blood-derived stem cells alleviate fulminant hepatic failure[J]. Stem Cell Res Ther, 2017, 8(1): 9. DOI: 10.1186/s13287-016-0453-6.
    [40] ZHANG S, JIANG L, HU H, et al. Pretreatment of exosomes derived from hUCMSCs with TNF-α ameliorates acute liver failure by inhibiting the activation of NLRP3 in macrophage[J]. Life Sci, 2020, 246: 117401. DOI: 10.1016/j.lfs.2020.117401.
    [41] CHEN L, ZHANG J, YANG L, et al. The effects of conditioned medium derived from mesenchymal stem cells cocultured with hepatocytes on damaged hepatocytes and acute liver failure in rats[J]. Stem Cells Int, 2018, 2018: 9156560. DOI: 10.1155/2018/9156560.
    [42] JIAO Y, LU W, XU P, et al. Hepatocyte-derived exosome may be as a biomarker of liver regeneration and prognostic valuation in patients with acute-on-chronic liver failure[J]. Hepatol Int, 2021, 15(4): 957-969. DOI: 10.1007/s12072-021-10217-3.
    [43] MA L, WEI J, ZENG Y, et al. Mesenchymal stem cell-originated exosomal circDIDO1 suppresses hepatic stellate cell activation by miR-141-3p/PTEN/AKT pathway in human liver fibrosis[J]. Drug Deliv, 2022, 29(1): 440-453. DOI: 10.1080/10717544.2022.2030428.
    [44] BANG OY, KIM EH. Mesenchymal stem cell-derived extracellular vesicle therapy for stroke: challenges and progress[J]. Front Neurol, 2019, 10: 211. DOI: 10.3389/fneur.2019.00211.
    [45] EGGENHOFER E, BENSELER V, KROEMER A, et al. Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion[J]. Front Immunol, 2012, 3: 297. DOI: 10.3389/fimmu.2012.00297.
    [46] VOLAREVIC V, MARKOVIC BS, GAZDIC M, et al. Ethical and safety issues of stem cell-based therapy[J]. Int J Med Sci, 2018, 15(1): 36-45. DOI: 10.7150/ijms.21666.
    [47] LÖRINCZ ÁM, TIMÁR CI, MAROSVÁRI KA, et al. Effect of storage on physical and functional properties of extracellular vesicles derived from neutrophilic granulocytes[J]. J Extracell Vesicles, 2014, 3: 25465. DOI: 10.3402/jev.v3.25465.
    [48] SHOKRAVI S, BORISOV V, ZAMAN BA, et al. Mesenchymal stromal cells (MSCs) and their exosome in acute liver failure (ALF): a comprehensive review[J]. Stem Cell Res Ther, 2022, 13(1): 192. DOI: 10.1186/s13287-022-02825-z.
    [49] CHENG Y, ZENG Q, HAN Q, et al. Effect of pH, temperature and freezing-thawing on quantity changes and cellular uptake of exosomes[J]. Protein Cell, 2019, 10(4): 295-299. DOI: 10.1007/s13238-018-0529-4.
    [50] WIKLANDER OP, NORDIN JZ, O'LOUGHLIN A, et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting[J]. J Extracell Vesicles, 2015, 4: 26316. DOI: 10.3402/jev.v4.26316.
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  650
  • HTML全文浏览量:  241
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-30
  • 录用日期:  2022-09-21
  • 出版日期:  2023-03-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回