中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Keap1/Nrf2信号通路探讨丹葛解酲汤对酒精性肝病大鼠模型的作用机制

王铭 徐建虎 马丽

叶露, 李秀芹, 王建青. 肝脏疾病中内质网应激与铁死亡的关系[J]. 临床肝胆病杂志, 2023, 39(4): 980-985. DOI: 10.3969/j.issn.1001-5256.2023.04.036.
引用本文: 叶露, 李秀芹, 王建青. 肝脏疾病中内质网应激与铁死亡的关系[J]. 临床肝胆病杂志, 2023, 39(4): 980-985. DOI: 10.3969/j.issn.1001-5256.2023.04.036.
YE L, LI XQ, WANG JQ. Association between endoplasmic reticulum stress and ferroptosis in liver diseases[J]. J Clin Hepatol, 2023, 39(4): 980-985. DOI: 10.3969/j.issn.1001-5256.2023.04.036.
Citation: YE L, LI XQ, WANG JQ. Association between endoplasmic reticulum stress and ferroptosis in liver diseases[J]. J Clin Hepatol, 2023, 39(4): 980-985. DOI: 10.3969/j.issn.1001-5256.2023.04.036.

基于Keap1/Nrf2信号通路探讨丹葛解酲汤对酒精性肝病大鼠模型的作用机制

DOI: 10.3969/j.issn.1001-5256.2023.05.018
基金项目: 

宁夏自然科学基金 (2021AAC03146);

宁夏医科大学校级特殊人才启动项目 (XT2020027)

伦理学声明:本研究方案于2022年4月7日经由宁夏医科大学实验动物中心实验动物伦理委员会审批,批号:IACUC-NYLAC-2021-119,符合实验室动物管理与使用准则。
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:王铭负责实验操作,整理数据,撰写文章;徐建虎负责指导实验和写作,分析数据;马丽负责实验设计,数据分析,拟定写作思路,修改文章及定稿。
详细信息
    通信作者:

    马丽,mali3549@163.com (ORCID: 0000-0002-6646-3438)

Mechanism of action of Dange Jiecheng decoction in a rat model of alcoholic liver disease based on the Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2 signaling pathway

Research funding: 

Natural Science Foundation of Ningxia (2021AAC03146);

University Level Special Talents Start-up Project of Ningxia Medical University (XT2020027)

More Information
  • 摘要:   目的  观察丹葛解酲汤对酒精性肝病(ALD)大鼠模型的治疗作用,探讨丹葛解酲汤抗氧化应激的作用机制。  方法  将96只SD大鼠随机分为空白组(n=13)和ALD组(n=83),ALD组采用白酒灌胃法建立ALD模型。随后将存活ALD组大鼠随机分为模型组、丹葛解酲汤高剂量组(24 g/kg)、丹葛解酲汤低剂量组(6 g/kg)及益肝灵片组(21 mg/kg),每组各17只,空白组和模型组给予生理盐水灌胃,其余组分别灌胃给予相应的药物,共干预4周。采用HE染色法观察大鼠肝组织的病理变化;Western Blot法检测肝脏组织Kelch样ECH相关蛋白1(Keap1)、核转录因子E2相关因子2(Nrf2)、血红素氧合酶1(HO-1)的蛋白含量;实时荧光定量PCR检测肝组织Keap1、HO-1 mRNA表达水平。计量资料多组间比较采用单因素方差分析,进一步两两比较采用LSD-t检验。  结果  与空白组相比,模型组肝细胞排列紊乱,出现肝细胞坏死,有大量炎性细胞浸润,并伴有大量的脂滴空泡;Keap1蛋白、Keap1 mRNA表达水平均明显上升(P值均<0.05),Nrf2蛋白、HO-1蛋白、HO-1 mRNA表达水平均明显下降(P值均<0.05)。与模型组相比,丹葛解酲汤高剂量组、丹葛解酲汤低剂量组及益肝灵片组肝细胞排列变整齐,坏死及炎性细胞减少,偶见或无脂滴空泡;Keap1蛋白、Keap1 mRNA表达水平显著降低(P值均<0.05),Nrf2蛋白、HO-1蛋白、HO-1 mRNA表达水平显著上升(P值均<0.05)。  结论  丹葛解酲汤可能通过调节Keap1/Nrf2信号通路,促使Nrf2入核,上调HO-1的表达,减轻氧化应激反应,进而对ALD大鼠发挥保护作用。

     

  • 内质网(endoplasmic reticulum,ER)在维持细胞稳态与机体健康之间的平衡中发挥着重要作用[1]。ER长期处于负荷状态时,其折叠蛋白质的能力下降,进而产生大量未折叠蛋白或错误折叠蛋白,该状态被称为ER应激(endoplasmic reticulum stress,ERS),未折叠蛋白反应(unfolded protein response,UPR)是一种ERS的保护性反应[2]。然而,强烈或持续的ERS仍会影响ER正常的生理功能并导致细胞损伤或死亡[3]。铁死亡是一种区别于凋亡、坏死、自噬的新型细胞死亡方式。其由于谷胱甘肽(glutathione,GSH)过氧化物酶4(glutathione peroxidase 4,GPX4)和GSH等抗氧化系统的功能受损,从而引起脂质过氧化物堆积。最近研究发现,ERS在肝脏疾病的发生、发展过程中往往也伴随着铁超载或脂质过氧化物累积等铁死亡的发生标志。现就ERS通过调控铁死亡影响肝脏疾病的相关研究进展作一综述。

    当ER出现蛋白折叠错误并积累到临界值以上时即可诱发ERS,并启动UPR来维持ER稳态[4]。UPR可由3种ER跨膜蛋白——肌醇需要酶1α(inositol requiring enzyme 1α,IRE1α)、蛋白激酶样ER激酶(protein kinase RNA-like ER kinase,PERK)和激活转录因子6(activating transcription factor 6,ATF6)调控,当稳态重构失败时ERS将引起细胞死亡[5-6]

    当错误折叠蛋白与IRE1α细胞质尾部的丝氨酸/苏氨酸结构域和核糖核酸酶(ribonuclease,RNase)结构域结合时,IRE1α自磷酸化可导致相邻RNase激活,其RNase将从编码X-box蛋白1(X-box protein 1,XBP1)转录因子的mRNA中切除1个26 nt内含子以产生稳态转录因子XBP1s,促进蛋白质折叠能力的恢复、ER相关降解通路的激活、蛋白质分泌基因的转录,进而减轻ER负荷[7-8]

    PERK同样通过反式磷酸化激活,当其激酶结构域在错误折叠蛋白存在的情况下二聚化时,真核翻译起始因子2α(eukaryotic translation initiation factor 2α,eIF2α)磷酸化。磷酸化后eIF2α活性被抑制,并因此减慢整体蛋白质翻译,从而使细胞有更多时间处理积压在ER腔内的蛋白质。与此同时,当eIF2α积累到一定程度时将选择性地增加ATF4的表达,其再调控70 kDa热休克蛋白5(recombinant heat shock 70 kDa protein 5,HSPA5)等有利于细胞生存的基因,保护细胞免于死亡[9-10]

    ATF6被酶解后,剩余的N端胞质为含有碱性亮氨酸拉链的转录激活功能域,其与XBP1s通过异二聚化的串扰增加靶标的转录,从而扩大ER面积并增加其蛋白质折叠能力以促进细胞存活,并通过调节ER蛋白57等分子伴侣基因的转录,如葡萄糖调节蛋白78(glucose-regulated protein 78,GRP78)、GRP78/结合免疫球蛋白、C/EBP同源蛋白(C/EBP homologus protein,CHOP),促进错误折叠蛋白的降解[11-12]

    当UPR的3个传感器在尝试重构ER稳态时,其适应性反应不足以恢复其蛋白质折叠能力,则会表现出更强烈的ERS[13-14]

    铁死亡是一种新型的程序性细胞死亡,该术语于2012年由Stockwell实验室首创,描述了由铁死亡诱导剂(erastin)或铁死亡激活剂(GPX4抑制剂,RSL3)导致的独特类型的细胞死亡[15]。目前,铁死亡发生机制相关研究已颇为全面,其主要发生机制可归纳为以下两点。

    正常条件下机体中的铁代谢处于稳态,血液循环中的Fe3+通过转铁蛋白受体进入体内再转化为Fe2+。当发生铁代谢紊乱时,Fe2+在细胞内大量积蓄导致芬顿反应,产生大量脂质过氧化物,进而诱发铁死亡[16]

    胱氨酸/谷氨酸逆向转运体(cystine-glutamate antiporter,System xc-)和GPX4目前被认为是介导铁死亡的关键调节因子。胱氨酸可通过System xc-进入细胞内参与GSH的合成,GSH再通过GPX4作用减少活性氧(reactive oxygen species,ROS)的产生,同时GPX4还可将被酰基辅酶A合成酶长链家族成员4(acyl-Co A synthetase longchain family member 4,ACSL4)和溶血磷脂酰胆碱酰基转移酶3(lyso-phosphatidylcholine acyltransferase 3,LPCAT3)氧化成磷脂氢过氧化物的多不饱和脂肪酸(polyunsaturated fatty acid,PUFA)——花生四烯酸、二十二碳四烯酸等还原成无毒的脂质醇。当System xc-或GPX4被抑制时可导致脂质过氧化物积累,是铁死亡的关键信号[17-18]。同时,P53基因作为一种抑癌基因,可通过下调溶质转运家族7A11(solute carrier 7A11,SLC7A11)的表达来抑制System xc-对胱氨酸的摄取,从而影响GPX4的活性,导致抗氧化能力降低,ROS积累和铁死亡[19]

    ERS通过调控相关信号通路可参与自噬、凋亡和铁死亡。自噬作为重要的蛋白质降解途径,可通过降解错误折叠蛋白和清除功能细胞器来缓解ERS。当ERS持续超出临界值且UPR不足以缓解ERS时,UPR过度激活自噬或溶酶体活性异常导致细胞过度降解不能发挥其正常功能而引起细胞凋亡或铁死亡。

    Chen等[20]在研究ATF4靶向人脑胶质瘤的实验中发现,ATF4的敲低显著降低了System xc-表达水平,增加了人脑胶质瘤对铁死亡的敏感性。因此,ATF-System xc-通路可能是ERS影响铁死亡的另一条通路。此外,Xu等[21]研究发现,在溃疡性结肠炎患者或葡聚糖硫酸钠诱导的溃疡性结肠炎小鼠模型中观察到铁死亡和ERS反应的发生,当采用PERK的抑制剂GSK414治疗结肠炎小鼠时,葡聚糖硫酸钠引起的铁死亡明显被抑制。Park等[22]在香烟烟雾冷凝物诱导人支气管上皮细胞铁死亡的实验中发现,香烟烟雾冷凝物不仅可以引起铁死亡,同时还激活了ERS中的PERK通路。基因芯片结果分析显示,ERS的发生可增加铁死亡的易感性。

    目前,铁死亡在肝脏疾病中主要应用于药物性肝损伤、非酒精性脂肪性肝病(NAFLD)和肝细胞癌(HCC),而ERS触发的UPR可通过各种途径参与细胞铁死亡(图 1)。因此,对ERS参与铁死亡的发生、发展过程的研究可为肝脏疾病的防治提供有效靶点。

    图  1  肝脏疾病中ERS与铁死亡的关系
    Figure  1.  Relationship between endoplasmic reticulum stress and ferroptosis in liver diseases

    NAFLD是21世纪全球最常见的肝病之一,其发病率仍在逐渐升高[23],但目前其发病机制尚不明确。NAFLD的疾病发展包含从单纯性脂肪变性到非酒精性肝炎(NASH)的一系列疾病,并可进展为肝硬化和HCC,是一种代谢异常综合征的肝损伤,其危险程度不言而喻。

    姜嫄等[24]通过GEO数据库的GSE89632数据集和铁死亡数据库(FerrDb)分析NAFLD肝组织中表达差异的铁死亡基因主要在脂肪分化、氧化应激、三价铁(Fe3+)结合方面富集。而在ERS反应的过程中,一些酶和转运蛋白可使进入到细胞质和线粒体基质中的Fe3+转变为Fe2+。Wei等[25]在研究砷诱导成年雄性Sprague-Dawley大鼠发生NASH时发现,铁死亡关键因子GPX4、GSH下调,ACSL4 mRNA水平显著上调且细胞线粒体膜破裂和嵴减少或消失,且铁抑素-1治疗砷诱导人肝细胞系L-02细胞时,细胞死亡率明显下降,GPX4的蛋白表达上升,线粒体形态改善等表明砷诱导NASH中有铁死亡的参与。进一步实验证实,抑制ACSL4是降低砷引发铁死亡的关键。此外,研究也发现大鼠肝脏中磷酸化IRE1α和GRP78的水平上调,提示ERS的发生。采用IRE1α的强效抑制剂Irestatin9389预处理细胞后,GPX4蛋白表达恢复,GSH水平显著上调,丙二醛含量下调,表明砷可通过IRE1α-ACSL4通路参与铁死亡,从而引起NASH。

    HCC是发生在肝细胞或肝内胆管上皮细胞中的恶性肿瘤,其预后较差[26],对HCC发病机制的探索迫在眉睫。

    目前,治疗HCC的最有效方式仍是诱导肝癌细胞死亡[27]。Wang等[28]在研究双氢青蒿素(dihydroartemisinin,DHA)治疗肝癌时发现,DHA诱导的4种磷脂酶C(phospholipase,PLC)细胞毒性均可被甲磺酸去铁胺和铁抑素-1治疗,表明DHA可诱导PLC细胞铁死亡。同时PERK、eIF2α、IRE1α等ERS相关因子的表达水平上调,提示UPR信号通路的3个分支均被DHA激活,敲低UPR的3个传感器后,PLC细胞活力增加。DHA通过增加阳离子转运调控样蛋白1抗体(cation transport regulator like protein 1,CHAC1)启动子活性来诱导铁死亡,CHAC1用于降解GSH。在CHAC1上存在ATF4、XBP1和ATF6等多个结合位点,当ATF4(或XBP1、ATF6)表达敲低后,DHA诱导铁死亡的效应显著减弱。综上所述,双氢青蒿素可通过ATF4、XBP1或ATF6诱导的CHAC1表达上调来引发原发性肝癌细胞中的铁死亡事件发生。碳离子辐射对HCC早/中期可提供更好的治疗效果[29]。Zheng等[30]利用碳离子照射联合索拉非尼治疗后,HepG2细胞表现出线粒体萎缩、膜密度增加、波峰降低等铁死亡的形态学特征,同时可见SLC7A11下调,脂质过氧化物产物——丙二醛水平上调,研究表明,碳离子照射可诱导铁死亡。GRP78/结合免疫球蛋白、PERK、ATF4 mRNA水平增加的同时,P53水平也随之上调,表明碳离子照射可诱发ERS,并促进P53基因表达。前期已有研究[31]表明,p53可通过转录抑制SLC7A11促进铁死亡。因此,推测碳离子照射可诱导PERK-ATF4-P53通路来下调SLC7A11促进细胞铁死亡。

    药物性肝损伤是指在药物使用过程中,因药物本身及其代谢产物或由于特殊体质对药物的超敏感性或耐受性降低所导致的肝损伤[32]。其中,对乙酰氨基酚是最主要的致病源,其中毒特征为脂质过氧化物诱导的铁死亡。Tak等[33]在研究肝细胞特异性Gα12蛋白过度表达可能会影响急性肝损伤的实验中发现,ERS可通过IRE1α-XBP1通路反式激活Gα12蛋白,并在后续一系列实验中证实Gα12蛋白是通过诱导花生四烯酸12脂氧合酶(arachidonate 12-lipoxygenase,ALOX12) 促进脂质过氧化物产生诱发铁死亡,结果表明,ERS中IRE1α-XBP1通路介导Gα12蛋白诱导ALOX12有助于铁死亡。

    酒精性肝病是一种大量饮酒导致的肝脏疾病[34]。已有证据[35]发现,在酒精诱导的肝损伤小鼠模型中,肝脏铁过载可诱发ERS。但在ERS的早期阶段,CHOP作为一种新型体内铁调素生产抑制剂,可显著抑制铁调素的表达[36],从而促进铁死亡的发生。因此,酒精性肝病的治疗也可将关注点转向ERS与铁死亡之间的关系。

    基于ERS参与铁死亡探索肝病治疗方法的模式将受到越来越多的关注。靶向铁死亡在防止由脂质过氧化、炎症浸润和免疫原性介导的各种肝损伤方面发挥重要作用,而ERS的参与也为肝病治疗提供了更多的方法和可能。综上所述,铁死亡是一种在形式和形态上均有别于其他细胞死亡类型的调节性细胞死亡,可受ERS调控。目前,关于ERS参与铁死亡的相关研究仍处于起步阶段,因此,需要进一步明确ERS参与铁死亡对肝脏病理生理学的影响,并积极探索ERS和铁死亡在更多疾病特异性背景下的潜在调节机制。

  • 注:a,空白组;b,模型组;c,益肝灵片组;d,中药低剂量组;e,中药高剂量组。

    图  1  各组大鼠肝脏组织病理学变化(HE染色,×200)

    Figure  1.  Pathological changes in liver tissue of rats in each group (HE, ×200)

    注:a,空白组;b,模型组;c,益肝灵片组;d,中药低剂量组;e,中药高剂量组。

    图  2  各组大鼠肝组织Keap1、Nrf2、HO-1蛋白表达量

    Figure  2.  The protein expression of Keap1, Nrf2 and HO-1 in liver tissue of rats in each group was detected

    表  1  引物序列

    Table  1.   Primer sequence

    基因 上游引物(5′-3′) 下游引物(5′-3′) 产物长度(bp)
    Keap1 CCTCCTCCAGCCCAGTCTTT GCCGTGTAGGCGAACTCAAT 127
    HO-1 CGCATGAACACTCTGGAGATG TGTGAGGGACTCTGGTCTTTGT 143
    β-actin CGTAAAGACCTCTATGCCAACA TAGGAGCCAGGGCAGTAATC 154
    下载: 导出CSV

    表  2  各组大鼠Keap1、Nrf2、HO-1蛋白表达量比较

    Table  2.   Comparison of Keap1、Nrf2、HO-1 protein expression in each group

    组别 动物数(只) Keap1 Nrf2 HO-1
    空白组 3 0.38±0.03 0.88±0.05 1.84±0.10
    模型组 3 1.19±0.041) 0.30±0.031) 0.56±0.111)
    益肝灵片组 3 0.44±0.042) 0.10±0.092) 1.80±0.072)
    中药低剂量组 3 0.72±0.092) 0.59±0.032) 1.14±0.092)
    中药高剂量组 3 0.45±0.042) 0.92±0.062) 1.46±0.092)
    F 118.374 64.316 96.754
    P <0.01 <0.01 <0.01
    注:与空白组比较,1)P<0.05;与模型组比较,2)P<0.05。
    下载: 导出CSV

    表  3  各组大鼠Keap1、HO-1 mRNA表达水平比较

    Table  3.   Comparison of Keap1 and HO-1 mRNA expression levels in rats of each group

    组别 动物数(只) Keap1 mRNA HO-1 mRNA
    空白组 3 1.01±0.12 1.09±0.09
    模型组 3 6.70±1.191) 0.27±0.061)
    益肝灵片组 3 1.83±0.092) 0.73±0.092)
    中药低剂量组 3 4.37±1.292) 0.48±0.062)
    中药高剂量组 3 2.20±0.162) 0.61±0.112)
    F 25.493 39.035
    P <0.01 <0.01
    注:与空白组比较,1)P<0.05;与模型组比较,2)P<0.05。
    下载: 导出CSV
  • [1] Fatty Liver Expert Committee, Chinese Medical Doctor Association; National Workshop on Fatty Liver and Alcoholic Liver Disease, Chinese Society of Hepatology, Chinese Medical Association. Guidelines of prevention and treatment for alcoholic liver disease: a 2018 update[J]. J Clin Hepatol, 2018, 34(5): 939-946. DOI: 10.3969/j.issn.1001-5256.2018.05.006.

    中国医师协会脂肪性肝病专家委员会, 中华医学会肝病学分会脂肪肝和酒精性肝病学组. 酒精性肝病防治指南(2018年更新版)[J]. 临床肝胆病杂志, 2018, 34(5): 939-946. DOI: 10.3969/j.issn.1001-5256.2018.05.006.
    [2] LI S, TAN HY, WANG N, et al. The role of oxidative stress and antioxidants in liver diseases[J]. Int J Mol Sci, 2015, 16(11): 26087-26124. DOI: 10.3390/ijms161125942.
    [3] SARIN SK, KUMAR M, ESLAM M, et al. Liver diseases in the Asia-Pacific region: a Lancet Gastroenterology & Hepatology Commission[J]. Lancet Gastroenterol Hepatol, 2020, 5(2): 167-228. DOI: 10.1016/S2468-1253(19)30342-5.
    [4] LI Y, YANG S. Progress on alcoholic liver disease[J/CD]. Chin J Liver Dis (Electronic Version), 2022, 14(3): 1-4. DOI: 10.3969/j.issn.1674-7380.2022.03.001.

    李玥, 杨松. 酒精性肝病研究进展[J/CD]. 中国肝脏病杂志(电子版), 2022, 14(3): 1-4. DOI: 10.3969/j.issn.1674-7380.2022.03.001.
    [5] OSNA NA, DONOHUE TM Jr, KHARBANDA KK. Alcoholic liver disease: Pathogenesis and current management[J]. Alcohol Res, 2017, 38(2): 147-161.
    [6] TONELLI C, CHIO I, TUVESON DA. Transcriptional regulation by Nrf2[J]. Antioxid Redox Signal, 2018, 29(17): 1727-1745. DOI: 10.1089/ars.2017.7342.
    [7] NI YH, HUO LJ, LI TT. Antioxidant axis Nrf2-keap1-ARE in inhibition of alcoholic liver fibrosis by IL-22[J]. World J Gastroenterol, 2017, 23(11): 2002-2011. DOI: 10.3748/wjg.v23.i11.2002.
    [8] WU KC, LIU J, KLAASSEN CD. Role of Nrf2 in preventing ethanol-induced oxidative stress and lipid accumulation[J]. Toxicol Appl Pharmacol, 2012, 262(3): 321-329. DOI: 10.1016/j.taap.2012.05.010.
    [9] PENG K, LIU GW. Introduction of professor Liu Guangwei's experience in treating alcoholic liver disease[J]. China Med Pharm, 2019, 9(17): 79-83. DOI: 10.3969/j.issn.2095-0616.2019.17.022.

    彭珂, 刘光伟. 刘光伟教授治疗酒精性肝病经验介绍[J]. 中国医药科学, 2019, 9(17): 79-83. DOI: 10.3969/j.issn.2095-0616.2019.17.022.
    [10] XIAO DM, LI DQ, WU YH. Progress in the clinical study of Chinese medicine of alcoholic liver disease[J]. Tradit Chin Drug Res Clin Pharmacol, 2018, 29(1): 118-122. DOI: 10.19378/j.issn.1003-9783.2018.023.

    肖达民, 李丹青, 吴艳华. 酒精性肝病的中医临床研究进展[J]. 中药新药与临床药理, 2018, 29(1): 118-122. DOI: 10.19378/j.issn.1003-9783.2018.023.
    [11] YANG T, SONG HP, CHEN Z, et al. Effect and mechanism of Yinchenhao decoction on acute alcoholic liver injury based on SIRT1/AMPK signaling pathway[J]. Pharmocol Clin Chin Mater Med, 2022, 38(1): 36-40. DOI: 10.13412/j.cnki.zyyl.2022.01.019.

    杨焘, 宋厚盼, 陈哲, 等. 基于SIRT1/AMPK信号通路探讨茵陈蒿汤治疗急性酒精性肝损伤的效应及机制[J]. 中药药理与临床, 2022, 38(1): 36-40. DOI: 10.13412/j.cnki.zyyl.2022.01.019.
    [12] LIAO XJ, ZHANG S, WANG YF, et al. Professor Wang Qingguo's experience in the treatment of alcoholic liver disease with Chaihu associated prescriptions[J]. China Med Herald, 2022, 19(24): 124-127. DOI: 10.20047/j.issn1673-7210.2022.24.28.

    廖雪晶, 张双, 王奕方, 等. 王庆国教授应用柴胡类方治疗酒精性肝病经验撷菁[J]. 中国医药导报, 2022, 19(24): 124-127. DOI: 10.20047/j.issn1673-7210.2022.24.28.
    [13] MA L, GAO YJ, QIAN YH, et al. Study on the protective effect of Dange Jiecheng decoction on alcoholic liver injury in rats[J]. Lishizhen Med Mater Med Res, 2010, 21(7): 1596-1597. DOI: 10.3969/j.issn.1008-0805.2010.07.009.

    马丽, 高玉杰, 钱月慧, 等. 丹葛解酲汤对大鼠酒精性肝损伤的保护作用研究[J]. 时珍国医国药, 2010, 21(7): 1596-1597. DOI: 10.3969/j.issn.1008-0805.2010.07.009.
    [14] MA L, AN C, GAO YJ, et al. The Dang Jiecheng Decoction to big rat liver alcoholic liver cell Bcl-2 and NF-κB expression's influence[J]. Lishizhen Med Mater Med Res, 2013, 24(8): 1854-1856. DOI: 10.3969/j.issn.1008-0805.2013.08.021.

    马丽, 安超, 高玉杰, 等. 丹葛解酲汤对酒精性肝损害大鼠肝细胞中Bcl-2和NF-κB表达的影响[J]. 时珍国医国药, 2013, 24(8): 1854-1856. DOI: 10.3969/j.issn.1008-0805.2013.08.021.
    [15] GAO XQ, WANG HY, QIAN H, et al. Sober-up effect of radix puerariae and flos pueraria for treating acute alcohol poisoning mice[J]. J Food Sci Biotechnol, 2012, 31(6): 621-627. DOI: 10.3969/j.issn.1673-1689.2012.06.010.

    高学清, 汪何雅, 钱和, 等. 葛根和葛花对急性酒精中毒小鼠的解酒作用[J]. 食品与生物技术学报, 2012, 31(6): 621-627. DOI: 10.3969/j.issn.1673-1689.2012.06.010.
    [16] SUN J, FU J, LI L, et al. Nrf2 in alcoholic liver disease[J]. Toxicol Appl Pharmacol, 2018, 357: 62-69. DOI: 10.1016/j.taap.2018.08.019.
    [17] TU W, WANG H, LI S, et al. The anti-inflammatory and anti-oxidant mechanisms of the Keap1/Nrf2/ARE signaling pathway in chronic diseases[J]. Aging Dis, 2019, 10(3): 637-651. DOI: 10.14336/AD.2018.0513.
    [18] GALICIA-MORENO M, LUCANO-LANDEROS S, MONROY-RAMIREZ HC, et al. Roles of Nrf2 in liver diseases: molecular, pharmacological, and epigenetic aspects[J]. Antioxidants (Basel), 2020, 9(10): 980. DOI: 10.3390/antiox9100980.
    [19] HUANG R, AN SX, WANG YT, et al. Keapl-Nrf2-ARE signaling pathway and oxidative stress damage in alcoholic liver disease[J]. Guangdong Chemical Industry, 2021, 48(1): 132-133, 140. DOI: 10.3969/j.issn.1007-1865.2021.01.058.

    黄如, 安胜选, 王禹婷, 等. Keap1-Nrf2-ARE信号通路与酒精性肝病氧化应激损伤研究进展[J]. 广东化工, 2021, 48(1): 132-133, 140. DOI: 10.3969/j.issn.1007-1865.2021.01.058.
    [20] YANG Z, YANG BS, YAN BZ, et al. Research advances in Keap1-Nrf2-ARE antioxidant pathway and liver diseases[J]. Chin Hepatol, 2018, 23(3): 266-268. DOI: 10.3969/j.issn.1008-1704.2018.03.025.

    杨战, 杨宝山, 颜炳柱, 等. Keap1-Nrf2-ARE抗氧化通路与肝脏疾病的研究进展[J]. 肝脏, 2018, 23(3): 266-268. DOI: 10.3969/j.issn.1008-1704.2018.03.025.
    [21] YANG XR, WANG B, HU XM, et al. Research progress on Keap1-Nrf2-ARE pathway and its involvement in the pathogenesis of liver disease[J]. J Zhejiang Ocean Univ (Natural Sci), 2021, 40(2): 176-180. DOI: 10.3969/j.issn.1008-830X.2021.02.012.

    杨绣荣, 王斌, 胡晓梦, 等. Keap1-Nrf2-ARE通路及其参与肝脏疾病病理机制研究进展[J]. 浙江海洋大学学报(自然科学版), 2021, 40(2): 176-180. DOI: 10.3969/j.issn.1008-830X.2021.02.012.
    [22] KONGPETCH S, KUKONGVIRIYAPAN V, PRAWAN A, et al. Crucial role of heme oxygenase-1 on the sensitivity of cholangiocarcinoma cells to chemotherapeutic agents[J]. PLoS One, 2012, 7(4): e34994. DOI: 10.1371/journal.pone.0034994.
    [23] LOBODA A, DAMULEWICZ M, PYZA E, et al. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism[J]. Cell Mol Life Sci, 2016, 73(17): 3221-3247. DOI: 10.1007/s00018-016-2223-0.
  • 期刊类型引用(6)

    1. 姜煜资,聂红明. 中药调控铁死亡治疗代谢功能障碍相关脂肪性肝病的研究进展. 上海中医药杂志. 2025(03): 94-100 . 百度学术
    2. 雷艳,彭小勇,邓蒙生,张东冬,朱英国,王建民,段朝霞,李涛,刘良明,杨光明. 细胞器应激反应与自噬及铁死亡参与氯化钴诱导的血管平滑肌细胞损伤. 中国临床药理学与治疗学. 2024(01): 1-10 . 百度学术
    3. 孙沈阳,陈烨,钮中辉. 右美托咪定调控p62/Keap1/Nrf2信号轴对LPS诱导大鼠肝脏损伤的保护机制研究. 新疆医科大学学报. 2024(07): 954-960 . 百度学术
    4. 李鸿亮,李文鹏,苟育聪,周凯欣,吕玺玮,孙富燕,莫重辉,洪金,高磊. 黄花棘豆对小鼠肝脏内质网应激和损伤的影响. 四川农业大学学报. 2024(05): 1136-1144 . 百度学术
    5. 李岫滟,雷娜,宋虹霏,曾玲,王东,穆杰. 内质网应激在非酒精性脂肪性肝病中的作用及相关靶向治疗. 临床肝胆病杂志. 2024(11): 2300-2305 . 本站查看
    6. 白杨静,钟舒阳. 铁死亡在自身免疫性葡萄膜炎中对血视网膜屏障作用机制的研究进展. 中华眼底病杂志. 2024(12): 980-985 . 百度学术

    其他类型引用(0)

  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  495
  • HTML全文浏览量:  158
  • PDF下载量:  61
  • 被引次数: 6
出版历程
  • 收稿日期:  2022-09-25
  • 录用日期:  2022-11-25
  • 出版日期:  2023-05-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

/

返回文章
返回