中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蒙药蓝盆花抑制肝星状细胞增殖的作用及机制初探

颜羽昕 高晓阳 张春艳 金蓉 袁宏伟 马月宏

引用本文:
Citation:

蒙药蓝盆花抑制肝星状细胞增殖的作用及机制初探

DOI: 10.3969/j.issn.1001-5256.2023.06.015
基金项目: 

国家自然科学基金 (81960759);

国家自然科学基金 (81560706);

内蒙古自治区自然科学基金 (2019MS08010);

内蒙古自治区自然科学基金 (2014MS0841);

内蒙古自治区草原英才培养计划 (Human Resources and Social Security Office of Inner Mongolia[2016]348);

内蒙古医科大学致远人才项目 (2020-11);

内蒙古人才开发基金 (2022-22056);

内蒙古医科大学蒙药抗肝纤维化作用研究科技创新团队 (2022-01);

内蒙古医科大学重点项目 (YKD2022ZD019)

伦理学声明:本研究方案于2015年3月11日经由内蒙古医科大学生物医学科研伦理委员会审批,批号:YKD2015153,符合实验室动物管理与使用准则。
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:颜羽昕、高晓阳负责课题设计,资料分析,撰写论文;张春艳、金蓉参与收集数据,修改论文;袁宏伟、马月宏负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    马月宏,myh19982002@sina.com (ORCID: 0000-0003-0699-378X)

Role and mechanism of action of the Mongolian medicine Scabiosa atropurea in inhibiting the proliferation of hepatic stellate cells

Research funding: 

National Natural Science Foundation of China (81960759);

National Natural Science Foundation of China (81560706);

Natural Science Foundation of Inner Mongolia Autonomous Region (2019MS08010);

Natural Science Foundation of Inner Mongolia Autonomous Region (2014MS0841);

Grassland Talent Cultivation Program of Inner Mongolia Autonomous Region (Human Resources and Social Security Office of Inner Mongolia[2016]348);

Zhiyuan Talent Project of Inner Mongolia Medical University (2020-11);

Inner Mongolia Talent Development Fund (2022-22056);

Science and Technology Innovation Team for Research on the Anti-Hepatic Fibrosis Effects of Mongolian Medicine at Inner Mongolia Medical University (2022-01);

Key Project of Inner Mongolia Medical University (YKD2022ZD019)

More Information
  • 摘要:   目的  利用细胞实验探究蓝盆花对肝星状细胞增殖的作用及机制。  方法  取20只Wistar大鼠随机分为对照组和给药组,每组10只,对照组以生理盐水灌胃,给药组予蓝盆花灌胃制备含药血清。分别加入对照组血清(10%)、蓝盆花含药血清低剂量(10%)、蓝盆花含药血清中剂量(15%)及蓝盆花含药血清高剂量(20%),用以孵育HSC-T6细胞。MTT法检测不同药物浓度在不同时间段对细胞的影响;流式细胞术检测细胞凋亡情况;qRT-PCR及Western blot检测HSC细胞中纤维化标志物(α-SMA、Collagen Ⅰ)及PI3K/Akt信号通路相关因子mRNA、蛋白表达情况。多组间比较采用单因素方差分析,进一步两两比较采用LSD-t检验。  结果  与对照组比较,蓝盆花含药血清低、中、高剂量组细胞OD值均显著降低(P值均<0.05),细胞总凋亡率均显著增高(P值均<0.05)。qRT-PCR结果显示,与对照组比较,蓝盆花含药血清低、中、高剂量组α-SMA、Collagen Ⅰ、PI3K、Akt mRNA表达显著下调,PTEN mRNA表达显著增高(P值均<0.05);Western blot结果显示,与对照组比较,蓝盆花含药血清低、中、高剂量组α-SMA、Collagen Ⅰ、PI3K、Akt、p-Akt蛋白表达显著下调,PTEN蛋白表达显著增高(P值均<0.05)。  结论  蒙药蓝盆花可抑制HSC-T6细胞增殖且促进其凋亡,其机制可能是通过调控纤维化标志物和PI3K/Akt信号通路来发挥抗肝纤维化作用。

     

  • 图  1  蓝盆花含药血清各组细胞凋亡的流式图

    Figure  1.  The flow chart of cell apoptosis in each group of serum containing blue pot flower

    图  2  各组细胞中α-SMA、Collagen Ⅰ和PI3K/Akt信号通路相关蛋白表达的电泳图

    Figure  2.  Electrophoresis plots of Collagen Ⅰ, α-SMA and PI3K/Akt signaling pathway-related protein expression in each group of cells

    表  1  各组细胞OD值的检测结果

    Table  1.   Results of OD value of cells in each group

    组别 给药24 h 给药48 h 给药72 h
    对照组 0.98±0.01 0.96±0.01 0.98±0.01
    低剂量组 0.63±0.042) 0.71±0.042) 0.88±0.021)
    中剂量组 0.71±0.042) 0.76±0.012) 0.85±0.031)
    高剂量组 0.38±0.052) 0.67±0.072) 0.81±0.032)
    F 37.82 20.64 45.07
    P <0.001 <0.001 <0.001
    注:与对照组比较,1)P<0.05, 2)P<0.01。
    下载: 导出CSV

    表  2  各组细胞凋亡率的检测结果

    Table  2.   Detection results of apoptosis rate in each group

    组别 晚期凋亡率(%) 早期凋亡率(%) 总凋亡率(%)
    对照组 7.45±0.40 4.48±0.83 11.92±1.08
    低剂量组 8.19±1.092) 16.51±0.852) 24.70±1.841)
    中剂量组 6.58±0.442) 10.87±0.922) 17.46±0.951)
    高剂量组 6.92±0.622) 12.36±0.882) 19.28±1.442)
    F 24.36 16.03 20.58
    P <0.001 <0.001 <0.001
    注:与对照组比较,1)P<0.05, 2)P<0.01。
    下载: 导出CSV

    表  3  HSC-T6细胞中α-SMA、Collagen Ⅰ、PI3K、Akt及PTEN的mRNA水平

    Table  3.   The mRNA expression levels of α-SMA, Collagen Ⅰ, PI3K, Akt and PTEN in HSC-T6 cells

    组别 Collagen Ⅰ α-SMA PI3K Akt PTEN
    对照组 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
    低剂量组 0.740±0.0741) 0.697±0.0792) 0.119±0.0142) 0.417±0.1402) 4.820±0.8572)
    中剂量组 0.334±0.1282) 0.422±0.0082) 0.274±0.0532) 0.399±0.0992) 2.856±0.0801)
    高剂量组 0.284±0.1092) 0.301±0.0202) 0.170±0.0562) 0.341±0.0802) 5.848±0.7742)
    F 41.74 62.62 269.90 32.15 41.29
    P <0.001 <0.001 <0.001 <0.001 <0.001
    注:与对照组比较,1)P<0.05, 2)P<0.01。
    下载: 导出CSV

    表  4  HSC-T6细胞中α-SMA、Collagen Ⅰ、PI3K、Akt、p-Akt及PTEN的蛋白表达水平

    Table  4.   The protein expression levels of α-SMA, Collagen Ⅰ, PI3K, Akt, p-Akt and PTEN in HSC-T6 cells

    组别 Collagen Ⅰ α-SMA PI3K Akt p-Akt PTEN
    对照组 0.081±0.011 0.346±0.087 0.095±0.013 0.840±0.053 0.632±0.043 1.005±0.005
    低剂量组 0.044±0.0052) 0.176±0.0322) 0.038±0.0032) 0.613±0.0202) 0.291±0.0692) 2.779±0.3022)
    中剂量组 0.052±0.0052) 0.196±0.0191) 0.049±0.0012) 0.492±0.0512) 0.356±0.0572) 2.889±0.0142)
    高剂量组 0.031±0.0052) 0.151±0.0132) 0.045±0.0022) 0.511±0.0562) 0.229±0.0212) 3.413±0.0542)
    F 27.86 10.28 44.10 34.36 36.74 139.80
    P <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
    注:与对照组比较,1)P<0.05, 2)P<0.01。
    下载: 导出CSV
  • [1] ZHANG CY, YUAN WG, HE P, et al. Liver fibrosis and hepatic stellate cells: Etiology, pathological hallmarks and therapeutic targets[J]. World J Gastroenterol, 2016, 22(48): 10512-10522. DOI: 10.3748/wjg.v22.i48.10512.
    [2] TRAUTWEIN C, FRIEDMAN SL, SCHUPPAN D, et al. Hepatic fibrosis: Concept to treatment[J]. J Hepatol, 2015, 62(1 Suppl): S15-S24. DOI: 10.1016/j.jhep.2015.02.039.
    [3] HIGASHI T, FRIEDMAN SL, HOSHIDA Y. Hepatic stellate cells as key target in liver fibrosis[J]. Adv Drug Deliv Rev, 2017, 121: 27-42. DOI: 10.1016/j.addr.2017.05.007.
    [4] ZHANG M, SERNA-SALAS S, DAMBA T, et al. Hepatic stellate cell senescence in liver fibrosis: Characteristics, mechanisms and perspectives[J]. Mech Ageing Dev, 2021, 199: 111572. DOI: 10.1016/j.mad.2021.111572.
    [5] EZHILARASAN D, SOKAL E, NAJIMI M. Hepatic fibrosis: It is time to go with hepatic stellate cell-specific therapeutic targets[J]. Hepatobiliary Pancreat Dis Int, 2018, 17(3): 192-197. DOI: 10.1016/j.hbpd.2018.04.003.
    [6] AYD1N MM, AKÇAL1 KC. Liver fibrosis[J]. Turk J Gastroenterol, 2018, 29(1): 14-21. DOI: 10.5152/tjg.2018.17330.
    [7] SCHUPPAN D, ASHFAQ-KHAN M, YANG AT, et al. Liver fibrosis: Direct antifibrotic agents and targeted therapies[J]. Matrix Biol, 2018, 68-69: 435-451. DOI: 10.1016/j.matbio.2018.04.006.
    [8] YANG HX, BAI YF, CHANG L, et al. Research progress on the resources and utilization of the Mongolian medicinal plant Cyperus genus[J]. Northwest Pharm J, 2020, 35(5): 779-784. DOI: 10.3969/j.issn.1004-2407.2020.05.031.

    杨宏昕, 白音夫, 常亮, 等. 蒙药材蓝盆花属植物资源及利用的研究进展[J]. 西北药学杂志, 2020, 35(5): 779-784. DOI: 10.3969/j.issn.1004-2407.2020.05.031.
    [9] LU C, LI Y, CUI Y, et al. Isolation and functional analysis of genes involved in polyacylated anthocyanin biosynthesis in Blue Senecio cruentus[J]. Front Plant Sci, 2021, 12: 640746. DOI: 10.3389/fpls.2021.640746.
    [10] JAMES ANTONY JJ, ZAKARIA S, ZAKARIA R, et al. Biochemical analyses of Dendrobium Sabin Blue PLBs during cryopreservation by vitrification[J]. Physiol Mol Biol Plants, 2019, 25(6): 1457-1467. DOI: 10.1007/s12298-019-00703-2.
    [11] ZHANG CY, YAN YX, GAO XY, et al. Mechanism of anti- hepatic fibrosis action of the monk's medicine seven flavors liver clearing powder: based on UHPLC-TOF-MS and network pharmacology methods[J]. J South Med Univ, 2021, 41(8): 1131-1141. DOI: 10.12122/j.issn.1673-4254.2021.08.02.

    张春艳, 颜羽昕, 高晓阳, 等. 蒙药七味清肝散抗肝纤维化的作用机制: 基于UHPLC-TOF-MS和网络药理学方法[J]. 南方医科大学学报, 2021, 41(8): 1131-1141. DOI: 10.12122/j.issn.1673-4254.2021.08.02.
    [12] LIANG J, MENG GSLM, YAN YX, et al. Study on the anti-hepatic fibrosis effect and mechanism of qiwei qinggan powder based on proteomics[J]. China Pharm, 2020, 31(11): 1294-1302. DOI: 10.6039/j.issn.1001-0408.2020.11.03.

    梁洁, 孟根斯立木, 颜羽昕, 等. 基于蛋白质组学研究七味清肝散的抗肝纤维化作用及机制研究[J]. 中国药房, 2020, 31(11): 1294-1302. DOI: 10.6039/j.issn.1001-0408.2020.11.03.
    [13] ZHANG CY, JIN R, YAN YX, et al. Exploring the mechanism of action of Bluebonnets against liver fibrosis based on pharmacodynamic and network pharmacological approaches[J]. China J Chin Mater Med, 2022, 47(13): 3609-3618. DOI: 10.19540/j.cnki.cjcmm.20220207.702.

    张春艳, 金蓉, 颜羽昕, 等. 基于药效学和网络药理方法探讨蓝盆花抗肝纤维化的作用机制[J]. 中国中药杂志, 2022, 47(13): 3609-3618. DOI: 10.19540/j.cnki.cjcmm.20220207.702.
    [14] LUBECKA K, FLOWER K, BEETCH M, et al. Loci-specific differences in blood DNA methylation in HBV-negative populations at risk for hepatocellular carcinoma development[J]. Epigenetics, 2018, 13(6): 605-626. DOI: 10.1080/15592294.2018.1481706.
    [15] TAO Y, WANG N, QIU T, et al. The role of autophagy and NLRP3 inflammasome in liver fibrosis[J]. Biomed Res Int, 2020, 2020: 7269150. DOI: 10.1155/2020/7269150.
    [16] ZHANG M, ZANG S. T cells in fibrosis and fibrotic diseases[J]. Front Immunol, 2020, 11: 1142. DOI: 10.3389/fimmu.2020.01142.
    [17] KOSTALLARI E, HIRSOVA P, PRASNICKA A, et al. Hepatic stellate cell-derived platelet-derived growth factor receptor-alpha-enriched extracellular vesicles promote liver fibrosis in mice through SHP2[J]. Hepatology, 2018, 68(1): 333-348. DOI: 10.1002/hep.29803.
    [18] MATSUDA M, SEKI E. Hepatic stellate cell-macrophage crosstalk in liver fibrosis and carcinogenesis[J]. Semin Liver Dis, 2020, 40(3): 307-320. DOI: 10.1055/s-0040-1708876.
    [19] KHOMICH O, IVANOV AV, BARTOSCH B. Metabolic hallmarks of hepatic stellate cells in liver fibrosis[J]. Cells, 2019, 9(1): 24. DOI: 10.3390/cells9010024.
    [20] SHI Z, ZHANG K, CHEN T, et al. Transcriptional factor ATF3 promotes liver fibrosis via activating hepatic stellate cells[J]. Cell Death Dis, 2020, 11(12): 1066. DOI: 10.1038/s41419-020-03271-6.
    [21] KAMM DR, MCCOMMIS KS. Hepatic stellate cells in physiology and pathology[J]. J Physiol, 2022, 600(8): 1825-1837. DOI: 10.1113/JP281061.
    [22] WANG R, SONG F, LI S, et al. Salvianolic acid A attenuates CCl4-induced liver fibrosis by regulating the PI3K/AKT/mTOR, Bcl-2/Bax and caspase-3/cleaved caspase-3 signaling pathways[J]. Drug Des Devel Ther, 2019, 13: 1889-1900. DOI: 10.2147/DDDT.S194787.
    [23] WU H, CHEN G, WANG J, et al. TIM-4 interference in Kupffer cells against CCL4-induced liver fibrosis by mediating Akt1/Mitophagy signalling pathway[J]. Cell Prolif, 2020, 53(1): e12731. DOI: 10.1111/cpr.12731.
    [24] XIE Y, SHI X, SHENG K, et al. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review)[J]. Mol Med Rep, 2019, 19(2): 783-791. DOI: 10.3892/mmr.2018.9713.
    [25] PAPA A, PANDOLFI PP. The PTEN-PI3K axis in cancer[J]. Biomolecules, 2019, 9(4): 153. DOI: 10.3390/biom9040153.
    [26] XIU AY, DING Q, LI Z, et al. Doxazosin attenuates liver fibrosis by inhibiting autophagy in hepatic stellate cells via activation of the PI3K/Akt/mTOR signaling pathway[J]. Drug Des Devel Ther, 2021, 15: 3643-3659. DOI: 10.2147/DDDT.S317701.
    [27] LIU X, LIU W, DING C, et al. Taxifolin, extracted from waste larix olgensis roots, attenuates CCl4-induced liver fibrosis by regulating the PI3K/AKT/mTOR and TGF-β1/Smads signaling pathways[J]. Drug Des Devel Ther, 2021, 15: 871-887. DOI: 10.2147/DDDT.S281369.
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  401
  • HTML全文浏览量:  60
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-10
  • 录用日期:  2023-02-01
  • 出版日期:  2023-06-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回