中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非酒精性脂肪性肝病患者的尿铅水平及其临床意义

刘亚杰 王睿林

引用本文:
Citation:

非酒精性脂肪性肝病患者的尿铅水平及其临床意义

DOI: 10.12449/JCH240909
基金项目: 

国家自然科学基金 (81673806);

中国医药教育协会科研课题 (2020KTY001)

伦理学声明:国家健康和营养检查调查研究项目获得美国国家卫生统计中心(NCHS)研究伦理审查委员会(ERB)批准,审批批号:Continuation of Protocol#2011-17;Protocol #2018-01,所有调查对象均提供了书面知情同意。
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:刘亚杰负责论文撰写,统计学分析,绘制图表;王睿林负责拟定写作思路,指导撰写及提供研究经费支持。
详细信息
    通信作者:

    王睿林, wrl7905@163.com (ORCID: 0000-0002-7129-016X)

Levels and clinical significance of urinary lead in patients with nonalcoholic fatty liver disease

Research funding: 

National Natural Science Foundation of China (81673806);

China Medical Education Association Research Project (2020KTY001)

More Information
    Corresponding author: WANG Ruilin, wrl7905@163.com (ORCID: 0000-0002-7129-016X)
  • 摘要:   目的  探讨尿铅与非酒精性脂肪性肝病(NAFLD)的关系。  方法  选取2017—2020年美国健康和营养检查调查数据(NHANES)中年龄≥18岁的注册参与者,并排除缺乏肝脏瞬时弹性成像数据、尿铅指标及患有乙型肝炎、丙型肝炎、饮酒量显著的人群。将纳入人群(n=2 492)分为NAFLD组852例,Non-NAFLD组1 640例。采用高效液相色谱-电喷雾电离-串联质谱和在线固相萃取联合同位素稀释等方法定量检测尿铅水平。计量资料两组间比较采用成组t检验或Wilcoxon秩和检验;计数资料两组间比较采用χ2检验或Fisher确切概率法。通过多因素Logistic回归分析、限制性立方样条函数、亚组分析、交互作用,探究尿铅与NAFLD的关联。  结果  NAFLD组尿铅水平高于Non-NAFLD组,差异有统计学意义(Z=-2.023,P=0.043)。调整年龄、性别、种族、婚姻、教育、家庭收入与贫困比比值、BMI、吸烟、饮酒、糖尿病、高血压、高脂血症协变量后,尿铅水平Q3组NAFLD的患病风险显著增加(比值比=1.360,95%CI:1.019~1.817,P=0.037)。尿铅与NAFLD的患病风险存在正向剂量-反应关系(P=0.047)且为非线性关系(Pnon-linear=0.037)。尿铅与种族之间存在显著的交互作用,墨西哥裔美国人尿铅每上升1个四分位数,NAFLD的患病风险增加32.40%(比值比=1.324,95%CI:1.017~1.632,P<0.05)。  结论  尿铅水平与NAFLD患病风险显著相关。

     

  • 图  1  尿铅与NAFLD之间的剂量-反应关系

    Figure  1.  Dose-response relationship between urinary lead and NAFLD

    表  1  研究对象基本特征

    Table  1.   Basic characteristics of research objects

    变量 总计(n=2 492) Non-NAFLD组(n=1 640) NAFLD组(n=852) 统计值 P
    年龄(岁) 51(34~64) 47(31~63) 56(42~65) Z=-7.448 <0.001
    年龄分组[例(%)] χ2=84.519 <0.001
    18~39岁 810(32.504) 635(38.720) 175(20.540)
    40~59岁 802(32.183) 477(29.085) 325(38.146)
    ≥60岁 880(35.313) 528(32.195) 352(41.315)
    性别[例(%)] χ2=15.922 <0.001
    1 273(51.083) 885(53.963) 388(45.540)
    1 219(48.917) 755(46.037) 464(54.460)
    种族[例(%)] χ2=46.165 <0.001
    墨西哥裔美国人 325(13.042) 169(10.305) 156(18.310)
    非西班牙裔黑人 669(26.846) 489(29.817) 180(21.127)
    非西班牙裔白人 812(32.584) 517(31.524) 295(34.624)
    其他 686(27.528) 465(28.354) 221(25.939)
    教育程度[例(%)] χ2=4.905 0.086
    大专或以上学历 1 380(55.377) 934(56.951) 446(52.347)
    高中或同等学力 637(25.562) 402(24.512) 235(27.582)
    高中以下 475(19.061) 304(18.537) 171(20.070)
    吸烟[例(%)] χ2=1.199 0.293
    一生吸烟<100支 1 517(60.875) 1 011(61.646) 506(59.390)
    一生吸烟≥100支 975(39.125) 629(38.354) 346(40.610)
    婚姻状况[例(%)] χ2=19.404 <0.001
    已婚/与伴侣同居 1 442(57.865) 914(55.732) 528(61.972)
    从来没有结过婚 518(20.787) 383(23.354) 135(15.845)
    丧偶/离婚/分居 532(21.348) 343(20.915) 189(22.183)
    饮酒[例(%)] χ2=1.354 0.273
    286(11.477) 197(12.012) 89(10.446)
    2 206(88.523) 1 443(87.988) 763(89.554)
    FMPIR 2.24(1.17~4.14) 2.36(1.17~4.27) 2.07(1.15~4.00) Z=-1.393 0.164
    FMPIR分组[例(%)] χ2=1.549 0.461
    <1.30 732(29.374) 474(28.902) 258(30.282)
    1.30~3.50 936(37.560) 610(37.195) 326(38.263)
    ≥3.50 824(33.066) 556(33.902) 268(31.455)
    BMI(kg/m2 28.40(24.50~33.70) 26.45(23.10~30.42) 32.70(28.70~37.52) Z=-22.603 <0.001
    BMI分组[例(%)] χ2=55.042 <0.001
    <25 kg/m2 686(27.528) 635(38.720) 51(5.986)
    25~30 kg/m2 789(31.661) 559(34.085) 230(26.995)
    ≥30 kg/m2 1 017(40.811) 446(27.195) 571(67.019)
    HTN[例(%)] χ2=11.396 <0.001
    2 068(82.986) 1 391(84.817) 677(79.460)
    424(17.014) 249(15.183) 175(20.540)
    HL[例(%)] χ2=77.241 <0.001
    2 204(88.443) 1 517(92.500) 687(80.634)
    288(11.557) 123(7.500) 165(19.366)
    DM[例(%)] χ2=89.765 <0.001
    2 148(86.196) 1 503(91.646) 645(75.704)
    344(13.804) 137(8.354) 207(24.296)
    尿铅(μg/L) 0.31(0.17~0.55) 0.30(0.16~0.55) 0.32(0.18~0.57) Z=-2.023 0.043
    下载: 导出CSV

    表  2  尿铅与NAFLD的Logistic分析

    Table  2.   Logistic analysis of urinary lead and NAFLD

    变量 模型1 模型2 模型3
    OR(95%CI P OR(95%CI P OR(95%CI P
    尿铅水平 1.050(0.962~1.147) 0.274 1.177(1.020~1.358) 0.026 1.048(0.939~1.169) 0.403
    尿铅分类
    Q1 1.000 1.000 1.000
    Q2 1.237(0.968~1.582) 0.089 1.253(0.975~1.611) 0.078 1.331(0.992~1.788) 0.057
    Q3 1.347(1.062~1.711) 0.014 1.310(1.026~1.674) 0.031 1.360(1.019~1.817) 0.037
    Q4 1.288(1.017~1.632) 0.036 1.179(0.920~1.511) 0.193 1.321(0.988~1.770) 0.061

    注:尿铅水平以每四分位数为间距,尿铅分类以Q1为参照。在模型1中未调整变量;在模型2中调整年龄、性别、种族社会人口学变量;模型3调整所有协变量(年龄、性别、种族、教育、婚姻、FMPIR、BMI、吸烟、饮酒、DM、HTN、HL)。

    下载: 导出CSV

    表  3  尿铅与NAFLD患病风险相关变量的亚组分析及交互作用检验

    Table  3.   Subgroup analysis and interaction test of variables related to urinary lead and NAFLD risk

    变量 OR(95%CI P P交互 变量 OR(95%CI P P交互
    年龄分组 0.053 BMI分组 0.165
    18~39岁 1.116(0.910~1.370) 0.292 <25 kg/m2 1.174(0.863~1.596) 0.307
    40~59岁 1.014(0.833~1.233) 0.892 25~30 kg/m2 0.974(0.818~1.158) 0.763
    ≥60岁 1.008(0.843~1.205) 0.931 ≥30 kg/m2 1.095(0.928~1.292) 0.285
    性别 0.630 DM 0.164
    1.064(0.904~1.254) 0.455 1.066(0.809~1.404) 0.650
    1.037(0.890~1.209) 0.640 1.047(0.928~1.181) 0.455
    吸烟 0.656 HTN 0.783
    一生吸烟≥100支 1.029(0.852~1.243) 0.768 1.095(0.843~1.423) 0.497
    一生吸烟<100支 1.049(0.921~1.196) 0.472 1.037(0.918~1.172) 0.560
    饮酒 0.321 HL 0.106
    1.033(0.917~1.163) 0.594 0.822(0.592~1.142) 0.243
    1.272(0.905~1.789) 0.166 1.078(0.957~1.215) 0.214
    种族 0.007 婚姻 0.410
    墨西哥裔美国人 1.324(1.017~1.632) 0.036 已婚/与伴侣同居 1.147(0.998~1.318) 0.053
    非西班牙裔黑人 1.039(0.935~1.790) 0.167 从来没有结过婚 0.961(0.731~1.264) 0.777
    非西班牙裔白人 1.022(0.863~1.211) 0.801 丧偶/离婚/分居 0.843(0.647~1.099) 0.207
    其他 1.016(0.855~1.208) 0.855 FMPIR 0.607
    教育 0.358 <1.30 1.079(0.863~1.349) 0.507
    高中以下 1.248(0.945~1.648) 0.118 1.30~3.50 1.114(0.932~1.332) 0.234
    高中或同等学力 0.918(0.732~1.151) 0.458 ≥3.50 0.975(0.812~1.172) 0.790
    大专或以上学历 1.059(0.915~1.227) 0.443
    下载: 导出CSV
  • [1] TARGHER G, TILG H, BYRNE CD. Non-alcoholic fatty liver disease: A multisystem disease requiring a multidisciplinary and holistic approach[J]. Lancet Gastroenterol Hepatol, 2021, 6( 7): 578- 588. DOI: 10.1016/S2468-1253(21)00020-0.
    [2] YOUNOSSI ZM, KOENIG AB, ABDELATIF D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64( 1): 73- 84. DOI: 10.1002/hep.28431.
    [3] RIAZI K, AZHARI H, CHARETTE JH, et al. The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol, 2022, 7( 9): 851- 861. DOI: 10.1016/S2468-1253(22)00165-0.
    [4] LIU X, JU YW, MANDZHIEVA S, et al. Sporadic Pb accumulation by plants: Influence of soil biogeochemistry, microbial community and physiological mechanisms[J]. J Hazard Mater, 2023, 444( Pt A): 130391. DOI: 10.1016/j.jhazmat.2022.130391.
    [5] LIU WY, FENG H, ZHENG SL, et al. Pb toxicity on gut physiology and microbiota[J]. Front Physiol, 2021, 12: 574913. DOI: 10.3389/fphys.2021.574913.
    [6] CUOMO D, FOSTER MJ, THREADGILL D. Systemic review of genetic and epigenetic factors underlying differential toxicity to environmental lead(Pb) exposure[J]. Environ Sci Pollut Res Int, 2022, 29( 24): 35583- 35598. DOI: 10.1007/s11356-022-19333-5.
    [7] GUO XY, YIN XZ, LIU ZJ, et al. Non-alcoholic fatty liver disease(NAFLD) pathogenesis and natural products for prevention and treatment[J]. Int J Mol Sci, 2022, 23( 24): 15489. DOI: 10.3390/ijms232415489.
    [8] BOSKABADY M, MAREFATI N, FARKHONDEH T, et al. The effect of environmental lead exposure on human health and the contribution of inflammatory mechanisms, a review[J]. Environ Int, 2018, 120: 404- 420. DOI: 10.1016/j.envint.2018.08.013.
    [9] TESCHKE R. Aluminum, arsenic, beryllium, cadmium, chromium, cobalt, copper, iron, lead, mercury, molybdenum, nickel, platinum, thallium, titanium, vanadium, and zinc: Molecular aspects in experimental liver injury[J]. Int J Mol Sci, 2022, 23( 20): 12213. DOI: 10.3390/ijms232012213.
    [10] SOMMAR JN, HEDMER M, LUNDH T, et al. Investigation of lead concentrations in whole blood, plasma and urine as biomarkers for biological monitoring of lead exposure[J]. J Expo Sci Environ Epidemiol, 2014, 24( 1): 51- 57. DOI: 10.1038/jes.2013.4.
    [11] ZHAI HL, CHEN C, WANG NJ, et al. Blood lead level is associated with non-alcoholic fatty liver disease in the Yangtze River Delta Region of China in the context of rapid urbanization[J]. Environ Health, 2017, 16( 1): 93. DOI: 10.1186/s12940-017-0304-7.
    [12] VUPPALANCHI R, NOUREDDIN M, ALKHOURI N, et al. Therapeutic pipeline in nonalcoholic steatohepatitis[J]. Nat Rev Gastroenterol Hepatol, 2021, 18( 6): 373- 392. DOI: 10.1038/s41575-020-00408-y.
    [13] MIKOLASEVIC I, ORLIC L, FRANJIC N, et al. Transient elastography(FibroScan®) with controlled attenuation parameter in the assessment of liver steatosis and fibrosis in patients with nonalcoholic fatty liver disease-Where do we stand?[J]. World J Gastroenterol, 2016, 22( 32): 7236- 7251. DOI: 10.3748/wjg.v22.i32.7236.
    [14] PENG HY, PAN L, RAN SM, et al. Prediction of MAFLD and NAFLD using different screening indexes: A cross-sectional study in U.S. adults[J]. Front Endocrinol, 2023, 14: 1083032. DOI: 10.3389/fendo.2023.1083032.
    [15] ZHANG KW, NULALI J, ZHANG CX, et al. The association between serum vitamin A and NAFLD among US adults varied in different BMI groups: A cross-sectional study[J]. Food Funct, 2023, 14( 2): 836- 844. DOI: 10.1039/d2fo02204d.
    [16] SELVARAJ EA, MÓZES FE, JAYASWAL ANA, et al. Diagnostic accuracy of elastography and magnetic resonance imaging in patients with NAFLD: A systematic review and meta-analysis[J]. J Hepatol, 2021, 75( 4): 770- 785. DOI: 10.1016/j.jhep.2021.04.044.
    [17] STANFIELD Z, SETZER RW, HULL V, et al. Bayesian inference of chemical exposures from NHANES urine biomonitoring data[J]. J Expo Sci Environ Epidemiol, 2022, 32( 6): 833- 846. DOI: 10.1038/s41370-022-00459-0.
    [18] RINELLA ME, NEUSCHWANDER-TETRI BA, SIDDIQUI MS, et al. AASLD practice guidance on the clinical assessment and management of nonalcoholic fatty liver disease[J]. Hepatology, 2023, 77( 5): 1797- 1835. DOI: 10.1097/HEP.0000000000000323.
    [19] WANG LL, YI JY, GUO XL, et al. Associations between life’s essential 8 and non-alcoholic fatty liver disease among US adults[J]. J Transl Med, 2022, 20( 1): 616. DOI: 10.1186/s12967-022-03839-0.
    [20] SANDERS AP, MAZZELLA MJ, MALIN AJ, et al. Combined exposure to lead, cadmium, mercury, and arsenic and kidney health in adolescents age 12-19 in NHANES 2009-2014[J]. Environ Int, 2019, 131: 104993. DOI: 10.1016/j.envint.2019.104993.
    [21] CHEN L, SUN QZ, PENG SF, et al. Associations of blood and urinary heavy metals with rheumatoid arthritis risk among adults in NHANES, 1999-2018[J]. Chemosphere, 2022, 289: 133147. DOI: 10.1016/j.chemosphere.2021.133147.
    [22] BUSER MC, INGBER SZ, RAINES N, et al. Urinary and blood cadmium and lead and kidney function: NHANES 2007-2012[J]. Int J Hyg Environ Health, 2016, 219( 3): 261- 267. DOI: 10.1016/j.ijheh. 2016.01.005.
    [23] HINAI MA, JANSEN EC, SONG PX, et al. Iron deficiency and vitamin D deficiency are associated with sleep in females of reproductive age: An analysis of NHANES 2005-2018 data[J]. J Nutr, 2024, 154( 2): 648- 657. DOI: 10.1016/j.tjnut.2023.11.030.
    [24] KIM DW, OCK J, MOON KW, et al. Association between Pb, Cd, and Hg exposure and liver injury among Korean adults[J]. Int J Environ Res Public Health, 2021, 18( 13): 6783. DOI: 10.3390/ijerph18136783.
    [25] CHUNG SM, MOON JS, YOON JS, et al. The sex-specific effects of blood lead, mercury, and cadmium levels on hepatic steatosis and fibrosis: Korean nationwide cross-sectional study[J]. J Trace Elem Med Biol, 2020, 62: 126601. DOI: 10.1016/j.jtemb.2020.126601.
    [26] CAVE M, APPANA S, PATEL M, et al. Polychlorinated biphenyls, lead, and mercury are associated with liver disease in American adults: NHANES 2003-2004[J]. Environ Health Perspect, 2010, 118( 12): 1735- 1742. DOI: 10.1289/ehp.1002720.
    [27] WANG NN, SHENG ZJ, ZHOU SM, et al. Chronic lead exposure exacerbates hepatic glucolipid metabolism disorder and gut microbiota dysbiosis in high-fat-diet mice[J]. Food Chem Toxicol, 2022, 170: 113451. DOI: 10.1016/j.fct.2022.113451.
    [28] WAN H, WANG YY, ZHANG HJ, et al. Chronic lead exposure induces fatty liver disease associated with the variations of gut microbiota[J]. Ecotoxicol Environ Saf, 2022, 232: 113257. DOI: 10.1016/j.ecoenv.2022.113257.
    [29] YANG ZR, LI XM, TIAN L, et al. Heavy metals exposure is associated with early liver dysfunction among rural residents aged 40-75 years in southwest China[J]. J Appl Toxicol, 2022, 42( 6): 1044- 1056. DOI: 10.1002/jat.4276.
    [30] MA L, LIU JY, DONG JX, et al. Toxicity of Pb2+ on rat liver mitochondria induced by oxidative stress and mitochondrial permeability transition[J]. Toxicol Res, 2017, 6( 6): 822- 830. DOI: 10.1039/c7tx00204a.
    [31] URBANO T, FILIPPINI T, LASAGNI D, et al. Association of urinary and dietary selenium and of serum selenium species with serum alanine aminotransferase in a healthy Italian population[J]. Antioxidants, 2021, 10( 10): 1516. DOI: 10.3390/antiox10101516.
    [32] LIU J, TAN L, LIU ZY, et al. Blood and urine manganese exposure in non-alcoholic fatty liver disease and advanced liver fibrosis: An observational study[J]. Environ Sci Pollut Res Int, 2023, 30( 9): 22222- 22231. DOI: 10.1007/s11356-022-23630-4.
    [33] FREDIANI JK, NAIOTI EA, VOS MB, et al. Arsenic exposure and risk of nonalcoholic fatty liver disease(NAFLD) among U.S. adolescents and adults: An association modified by race/ethnicity, NHANES 2005-2014[J]. Environ Health, 2018, 17( 1): 6. DOI: 10.1186/s12940-017-0350-1.
    [34] HYDER O, CHUNG M, COSGROVE D, et al. Cadmium exposure and liver disease among US adults[J]. J Gastrointest Surg, 2013, 17( 7): 1265- 1273. DOI: 10.1007/s11605-013-2210-9.
    [35] HUH JH, LEE KJ, LIM JS, et al. High dietary sodium intake assessed by estimated 24-h urinary sodium excretion is associated with NAFLD and hepatic fibrosis[J]. PLoS One, 2015, 10( 11): e0143222. DOI: 10.1371/journal.pone.0143222.
    [36] LUO J, XING WQ, IPPOLITO JA, et al. Bioaccessibility, source and human health risk of Pb, Cd, Cu and Zn in windowsill dusts from an area affected by long-term Pb smelting[J]. Sci Total Environ, 2022, 842: 156707. DOI: 10.1016/j.scitotenv.2022.156707.
    [37] MORADNIA M, MOVAHEDIAN ATTAR H, HEIDARI Z, et al. Monitoring of urinary arsenic(As) and lead(Pb) among a sample of pregnant Iranian women[J]. J Environ Health Sci Eng, 2021, 19( 2): 1901- 1909. DOI: 10.1007/s40201-021-00743-5.
  • 加载中
图(1) / 表(3)
计量
  • 文章访问数:  130
  • HTML全文浏览量:  68
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-03
  • 录用日期:  2024-01-29
  • 出版日期:  2024-09-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回