慢加急性肝衰竭不同预后患者血浆外泌体差异蛋白的生物信息学分析
DOI: 10.3969/j.issn.1001-5256.2021.04.022
A bioinformatics analysis of differentially expressed proteins in plasma exosome of acute-on-chronic liver failure patients with different prognoses
-
摘要:
目的 筛选不同预后慢加急性肝衰竭(ACLF)患者血浆外泌体中的差异蛋白, 分析其功能及生物学过程, 为患者临床诊断提供参考依据。 方法 前瞻性选取2019年7月—10月于首都医科大学附属北京佑安医院住院确诊的ACLF患者10例, 随访90 d, 患者死亡或肝移植归入肝移植/死亡组(n=5), 患者存活归入生存组(n=5), 两组一般资料指标比较采用Mann-Whitney U秩和检验。采用非标记(Label-free) 定量蛋白质组学技术对血浆外泌体蛋白进行鉴定和定量分析, 筛选差异蛋白并进行功能富集分析, 使用R-3.5.1软件对差异蛋白进行层次聚类分析, 分析其参与的生物学过程。 结果 外泌体蛋白质组学分析共鉴定出860种蛋白, 以倍数上调>1.2倍或下调>1.2倍且P<0.05的标准筛选出差异表达蛋白116种, 与肝移植/死亡组相比, 生存组上调蛋白62种、下调蛋白54种。生物信息学分析结果显示, 这些蛋白主要参与了免疫反应、信号转导、囊泡介导的转运、细胞死亡和增殖等生物学过程, 并与炎症反应、糖类和氨基酸代谢、肝细胞损伤及再生等信号通路密切相关。 结论 非标记定量蛋白质组学技术筛选出的差异蛋白可能作为ACLF早期诊断及预后判断的血清学标志物。 Abstract:Objective To investigate the differentially expressed proteins in the plasma exosome of acute-on-chronic liver failure (ACLF) patients with different prognoses, to analyze their functions and biological processes, and to provide a basis for clinical diagnosis. Methods A prospective study was performed for 10 ACLF patients who were hospitalized and diagnosed in Beijing YouAn Hospital, Capital Medical University, from July 2019 to October 2019, and the patients were followed up for 90 days. The patients who died or received liver transplantation were enrolled as liver transplantation/death group (5 patients), and the patients who survived were enrolled as survival group (5 patients). The Mann-Whitney U test was used for comparison of general data between the two groups. The label-free quantitative proteomic method was used for identification and quantitative analysis of plasma exosome proteins to screen out differentially expressed proteins, and a functional enrichment analysis was performed. R-3.5.1 software was used to perform a hierarchical cluster analysis of differentially expressed proteins to analyze the biological processes involving these proteins. Results A total of 860 proteins were identified by the exosome proteomic analysis, and according to the criteria of upregulation > 1.2 folds or downregulation > 1.2 folds (P < 0.05), there were 116 differentially expressed proteins. Compared with the liver transplantation/death group, the survival group had 62 upregulated proteins and 54 downregulated proteins. The bioinformatics analysis showed that these differentially expressed proteins mainly participated in immune reaction, signal transduction, vesicle-mediated transport, cell death, and cell proliferation and were closely associated with the signaling pathways including inflammatory response, carbohydrate and amino acid metabolism, hepatocyte injury, and hepatocyte regeneration. Conclusion Differentially expressed proteins screened out by the label-free quantitative proteomic method can be used as serological markers for the early diagnosis and prognostic evaluation of ACLF. -
Key words:
- Acute-On-Chronic Liver Failure /
- Exosomes /
- Proteomics /
- Computational Biology
-
表 1 液相色谱洗脱条件
时间(min) 流动相B比例(%) 0 6 8 15 60 32 79 40 80 95 85 95 86 6 90 3 表 2 两组患者一般资料比较
项目 生存组(n=5) 肝移植/死亡组(n=5) Z值 P值 男性[例(%)] 3(60) 3(60) 年龄(岁) 43.80(42.00~53.00) 44.60(33.00~51.00) 0.17 0.22 ALT(U/L) 115.46(9.70~421.20) 242.58(31.30~781.90) 1.36 0.22 AST(U/L) 131.70(49.90~168.90) 228.06(50.90~496.50) 0.52 0.69 凝血酶原活动度 23.20(10.00~34.00) 31.06(15.30~48.00) 0.94 0.42 TBil(μmol/L) 360.30(213.40~498.60) 450.46(340.00~690.80) 0.52 0.69 DBil(μmol/L) 226.90(142.40~311.10) 295.70(102.30~418.70) 0.73 0.55 AFP(ng/ml) 91.20(6.25~290.10) 184.21(7.42~591.4) 0.52 0.69 WBC(×109/L) 4.23(1.48~5.71) 8.50(7.40~10.43) 0.94 0.42 RBC(×1012/L) 3.22(2.44~3.74) 3.45(2.99~4.26) 0.31 0.84 PLT(×109/L) 88.00(35.00~163.00) 85.40(42.00~121.00) 0.31 0.84 注: HLA, 人类淋巴细胞抗原。 表 3 (肝移植/死亡组)/生存组上调差异蛋白
基因 蛋白编号 差异蛋白 差异倍数 P值 IGHV4-4 A0A075B6R2 Ig重变4-4 747.718 0.049 58 IGHV3-21 A0A0B4J1V1 Ig重变3-21 458.288 0.043 69 IGHV3-73 A0A0B4J1V6 Ig重变3-73 450.090 0.010 41 IGKV1-8 A0A0C4DH67 Igκ变量1-8 222.641 0.001 08 IGKV1D-12 P01611 Igκ变量1D-12 181.438 0.046 98 DNM1L G8JLD5 动力相关蛋白1(Drp1) 178.461 0.010 70 DIAPH1 H9KV28 透明基因相关成蛋白1(Diaph1) 153.400 0.041 52 NCOR1 J3KRE4 核受体共抑制因子1(NCoR1) 128.299 0.006 20 HPRT1 P00492 次黄嘌呤磷酸核糖基转移酶 113.501 0.008 19 IGLV3-19 P01714 Igλ变量3-19 108.399 0.032 01 IGHV4-39 P01824 Ig重变4-39 101.752 0.004 34 ASL P04424 精氨琥珀酸裂解酶(ASL) 97.605 0.001 68 RPN2 P04844 核糖体结合蛋白Ⅱ 93.996 0.034 03 HLA-A P05534 HLAⅠ类组织相容性抗原, A-24链 88.826 0.000 19 GSTP1 P09211 谷胱甘肽S-转移酶P 83.988 0.028 45 表 4 (肝移植/死亡组)/生存组下调差异蛋白
基因 蛋白编号 差异蛋白 差异倍数 P值 SDCBP SDCBP 同线蛋白1 0.104 87 0.048 88 H3F3B K7EMV3 组蛋白H3 0.092 72 0.042 38 WBP2 K7EIJ0 WW结构域结合蛋白2 0.092 49 0.042 25 DSP P15924 桥粒斑蛋白 0.090 24 0.041 04 SLC3A2 F5GZS6 4F2细胞表面抗原重链 0.089 90 0.040 86 FTL P02792 铁蛋白轻链 0.086 97 0.039 28 KRT6A P02538 角蛋白, Ⅱ型细胞骨架6A 0.085 11 0.038 28 KRT2 P35908 角蛋白Ⅱ型表皮细胞骨架2 0.081 73 0.036 46 EHD4 Q9H223 EH含域蛋白4 0.081 67 0.036 42 SDCBP G5EA09 同线蛋白, 同型CRA_a 0.081 40 0.036 29 KRT14 P02533 角蛋白, Ⅱ型细胞骨架14 0.080 83 0.035 97 F11 P03951 凝血因子Ⅺ 0.080 10 0.035 57 ANXA6 P08133 膜联蛋白A6 0.075 99 0.033 36 TFRC P02786 转铁蛋白受体1 0.075 67 0.033 19 KPRP Q5T749 角化细胞富含脯氨酸蛋白 0.073 74 0.032 15 -
[1] TANG CM, YAU TO, YU J. Management of chronic hepatitis B infection: Current treatment guidelines, challenges, and new developments[J]. World J Gastroenterol, 2014, 20(20): 6262-6278. DOI: 10.3748/wjg.v20.i20.6262. [2] SARIN SK, KEDARISETTY CK, ABBAS Z, et al. Acute-on-chronic liver failure: Consensus recommendations of the Asian Pacific Association for the Study of the Liver (APASL) 2014[J]. Hepatol Int, 2014, 8(4): 453-471. DOI: 10.1007/s12072-014-9580-2. [3] SARIN SK, CHOUDHURY A. Acute-on-chronic liver failure: Terminology, mechanisms and management[J]. Nat Rev Gastroenterol Hepatol, 2016, 13(3): 131-149. DOI: 10.1038/nrgastro.2015.219. [4] HIRSOVA P, IBRAHIM SH, VERMA VK, et al. Extracellular vesicles in liver pathobiology: Small particles with big impact[J]. Hepatology, 2016, 64(6): 2219-2233. DOI: 10.1002/hep.28814. [5] XU S, ZHANG LP. Research advances in the role of exosomes in non-neoplastic liver diseases[J]. J Clin Hepatol, 2020, 36(4): 940-943. DOI: 10.3969/j.issn.1001-5256.2020.04.052.徐帅, 张立平. 外泌体在非肿瘤性肝脏疾病中的研究进展[J]. 临床肝胆病杂志, 2020, 36(4): 940-943. DOI: 10.3969/j.issn.1001-5256.2020.04.052. [6] VERMA VK, LI H, WANG R, et al. Alcohol stimulates macrophage activation through caspase-dependent hepatocyte derived release of CD40L containing extracellular vesicles[J]. J Hepatol, 2016, 64(3): 651-660. DOI: 10.1016/j.jhep.2015.11.020. [7] NOJIMA H, FREEMAN CM, SCHUSTER RM, et al. Hepatocyte exosomes mediate liver repair and regeneration via sphingosine-1-phosphate[J]. J Hepatol, 2016, 64(1): 60-68. DOI: 10.1016/j.jhep.2015.07.030. [8] Liver Failure and Artificial Liver Group, Chinese Society of Infectious Diseases, Chinese Medical Association; Severe Liver Disease and Artificial Liver Group, Chinese Society of Hepatology, Chinese Medicial Association. Guideline for diagnosis and treatment of liver failure(2018)[J]. J Clin Hepatol, 2019, 35(1): 38-44. DOI: 10.3969/j.issn.1001-5256.2019.01.007.中华医学会感染病学分会肝衰竭与人工肝学组, 中华医学会肝病学分会重型肝病与人工肝学组. 肝衰竭诊治指南(2018年版)[J]. 临床肝胆病杂志, 2019, 35(1): 38-44. DOI: 10.3969/j.issn.1001-5256.2019.01.007. [9] JING HM, ZHANG T, YANG F, et al. Manganese-related differential proteomic studies of cerebrospinal fluid from rats by label free method[J]. J Toxicol, 2012, 26(4): 247-253. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDL201204001.htm敬海明, 张拓, 杨帆, 等. Label free方法研究大鼠脑脊液中锰毒性相关的差异蛋白质组[J]. 毒理学杂志, 2012, 26(4): 247-253. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDL201204001.htm [10] DEMORY BECKLER M, HIGGINBOTHAM JN, FRANKLIN JL, et al. Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS[J]. Mol Cell Proteomics, 2013, 12(2): 343-355. DOI: 10.1074/mcp.M112.022806. [11] JI H, GREENING DW, BARNES TW, et al. Proteome profiling of exosomes derived from human primary and metastatic colorectal cancer cells reveal differential expression of key metastatic factors and signal transduction components[J]. Proteomics, 2013, 13(10-11): 1672-1686. DOI: 10.1002/pmic.201200562. [12] ALBILLOS A, LARIO M, ÁLVAREZ-MON M. Cirrhosis-associated immune dysfunction: Distinctive features and clinical relevance[J]. J Hepatol, 2014, 61(6): 1385-1396. DOI: 10.1016/j.jhep.2014.08.010. [13] GUO YY, YUAN CB, YU HY, et al. Difference of T lymphocyte subsets in peripheral blood of children with chronic hepatitis B and liver failure[J]. Chin Hepatol, 2014, 19(7): 515-517. https://www.cnki.com.cn/Article/CJFDTOTAL-ZUAN201407011.htm郭银燕, 袁春蓓, 俞海英, 等. 慢性乙型肝炎与肝衰竭患儿外周血T淋巴细胞亚群的差异[J]. 肝脏, 2014, 19(7): 515-517. https://www.cnki.com.cn/Article/CJFDTOTAL-ZUAN201407011.htm [14] VEIGA-PARGA T, SEHRAWAT S, ROUSE BT. Role of regulatory T cells during virus infection[J]. Immunol Rev, 2013, 255(1): 182-196. DOI: 10.1111/imr.12085. [15] SMIRNOVA E, GRIPARIC L, SHURLAND DL, et al. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells[J]. Mol Biol Cell, 2001, 12(8): 2245-2256. DOI: 10.1091/mbc.12.8.2245. [16] YANG X, WANG H, NI HM, et al. Inhibition of Drp1 protects against senecionine-induced mitochondria-mediated apoptosis in primary hepatocytes and in mice[J]. Redox Biol, 2017, 12: 264-273. DOI: 10.1016/j.redox.2017.02.020. [17] XU S, PI H, CHEN Y, et al. Cadmium induced Drp1-dependent mitochondrial fragmentation by disturbing calcium homeostasis in its hepatotoxicity[J]. Cell Death Dis, 2013, 4: e540. DOI: 10.1038/cddis.2013.7. [18] PALMA E, MA X, RIVA A, et al. Dynamin-1-like protein inhibition drives megamitochondria formation as an adaptive response in alcohol-induced hepatotoxicity[J]. Am J Pathol, 2019, 189(3): 580-589. DOI: 10.1016/j.ajpath.2018.11.008. [19] GALLOWAY CA, LEE H, BROOKES PS, et al. Decreasing mitochondrial fission alleviates hepatic steatosis in a murine model of nonalcoholic fatty liver disease[J]. Am J Physiol Gastrointest Liver Physiol, 2014, 307(6): G632-641. DOI: 10.1152/ajpgi.00182.2014. [20] YU T, WANG L, LEE H, et al. Decreasing mitochondrial fission prevents cholestatic liver injury[J]. J Biol Chem, 2014, 289(49): 34074-34088. DOI: 10.1074/jbc.M114.588616. [21] STRITT S, NURDEN P, TURRO E, et al. A gain-of-function variant in DIAPH1 causes dominant macrothrombocytopenia and hearing loss[J]. Blood, 2016, 127(23): 2903-2914. DOI: 10.1182/blood-2015-10-675629. [22] LYNCH ED, LEE MK, MORROW JE, et al. Nonsyndromic deafness DFNA1 associated with mutation of a human homolog of the Drosophila gene diaphanous[J]. Science, 1997, 278(5341): 1315-1318. DOI: 10.1126/science.278.5341.1315 [23] YANG J, ZHOU L, ZHANG Y, et al. DIAPH1 Is Upregulated and inhibits cell apoptosis through ATR/p53/Caspase-3 signaling pathway in laryngeal squamous cell carcinoma[J]. Dis Markers, 2019, 2019: 6716472. DOI: 10.1155/2019/6716472. [24] LIU D, FU X, WANG Y, et al. Protein diaphanous homolog 1 (Diaph1) promotes myofibroblastic activation of hepatic stellate cells by regulating Rab5a activity and TGFβ receptor endocytosis[J]. FASEB J, 2020, 34(6): 7345-7359. DOI: 10.1096/fj.201903033R. [25] SUN Z, FENG D, FANG B, et al. Deacetylase-independent function of HDAC3 in transcription and metabolism requires nuclear receptor corepressor[J]. Mol Cell, 2013, 52(6): 769-782. DOI: 10.1016/j.molcel.2013.10.022. [26] BURRAGE LC, MADAN S, LI X, et al. Chronic liver disease and impaired hepatic glycogen metabolism in argininosuccinate lyase deficiency[J]. JCI Insight, 2020, 5(4). DOI: 10.1172/jci.insight.132342. [27] UCHIHARA T, MIYAKE K, YONEMURA A, et al. Extracellular vesicles from cancer-associated fibroblasts containing annexin A6 induces FAK-YAP activation by stabilizing β1 integrin, enhancing drug resistance[J]. Cancer Res, 2020, 80(16): 3222-3235. DOI: 10.1158/0008-5472.CAN-19-3803. [28] ALVAREZ-GUAITA A, BLANCO-MUÑOZ P, MENESES-SALAS E, et al. Annexin A6 is critical to maintain glucose homeostasis and survival during liver regeneration in mice[J]. Hepatology, 2020, 72(6): 2149-2164. DOI: 10.1002/hep.31232. [29] TORTI SV, TORTI FM. Iron and cancer: More ore to be mined[J]. Nat Rev Cancer, 2013, 13(5): 342-355. DOI: 10.1038/nrc3495. [30] ALKHATEEB AA, CONNOR JR. The significance of ferritin in cancer: Anti-oxidation, inflammation and tumorigenesis[J]. Biochim Biophys Acta, 2013, 1836(2): 245-254. DOI: 10.1016/j.bbcan.2013.07.002. [31] LUNOVA M, GOEHRING C, KUSCUOGLU D, et al. Hepcidin knockout mice fed with iron-rich diet develop chronic liver injury and liver fibrosis due to lysosomal iron overload[J]. J Hepatol, 2014, 61(3): 633-641. DOI: 10.1016/j.jhep.2014.04.034. [32] WANG AR, LI XL, MEN QS, et al. Serum ferritin and liver disease[J/CD]. Chin J Liver Dis(Electronic Edition), 2020, 12(4): 34-37. DOI: 10.3969/j.issn.1674-7380.2020.04.006.王傲然, 李晓玲, 门秋爽, 等. 血清铁蛋白与肝脏疾病研究进展[J/CD]. 中国肝脏病杂志(电子版), 2020, 12(4): 34-37. DOI: 10.3969/j.issn.1674-7380.2020.04.006. [33] DENG JH, CHEN ZP, HUANG MM, et al. Clinical significance of Ferritin Light Chain and its expression in serum of patients with chronic hepatopathy[J]. Modern Prevent Med, 2016, 43(18): 3444-3447. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYF201618046.htm邓敬桓, 陈智平, 黄美梦, 等. FTL在慢性肝病患者血清中的表达及临床意义[J]. 现代预防医学, 2016, 43(18): 3444-3447. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYF201618046.htm