中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于芯片筛选肝内胆管细胞癌差异表达的环状RNA_000585并探讨其潜在的作用机制

易烽明 辛龙祥 冯龙

引用本文:
Citation:

基于芯片筛选肝内胆管细胞癌差异表达的环状RNA_000585并探讨其潜在的作用机制

DOI: 10.3969/j.issn.1001-5256.2021.10.017
基金项目: 

江西省科技厅重点研发计划——一般项目 (20203BBGL73144)

详细信息
    通信作者:

    冯龙,longfengefy@163.com

  • 中图分类号: R735.7

Screening of differentially expressed circular RNAs in intrahepatic cholangiocarcinoma based on microarray technique and potential mechanism of circRNA_000585

Research funding: 

Jiangxi Provincial Department of Science and Technology (20203BBGL73144)

  • 摘要:   目的  通过对肝内胆管细胞癌(iCCA)和配对的癌旁组织的circRNA芯片比较分析,发现并验证iCCA中异常表达的circRNA,进而揭示其潜在的机制。  方法  收集2019年7月—12月收治的3例iCCA患者肿瘤组织标本,采用微阵列芯片杂交的方法检测iCCA和癌旁组织中circRNA的差异表达,并收集同一时期15例iCCA患者样本,采用实时定量PCR(RT-PCR)验证差异表达的circRNA。通过生物信息学分析寻找差异表达的circRNA的下游分子,并进一步采用RT-PCR对潜在分子进行验证。计量资料组间比较采用配对样本t检验;计数资料组间比较采用χ2检验或Fisher精确检验。  结果  采用1.5倍作为差异表达界值,结果发现iCCA相比癌旁组织中117个circRNAs出现上调,104个circRNAs出现下调。采用3倍作为界值,发现iCCA中10个circRNAs出现上调(circRNA_002172、circRNA_002144、circRNA_001588、circRNA_000166、circRNA_000585、circRNA_000167、circRNA_402608、circRNA_006853、circRNA_001589、circRNA_008882),3个circRNAs出现下调(circRNA_406083、circRNA_104940、circRNA_006349)。收集15例病理证实的iCCA及癌旁组织,采用RT-PCR进行验证差异表达的circRNA,结果发现circRNA_000585在iCCA中表达显著升高(t=3.607,P=0.003)。进一步通过生物信息学分析发现circRNA_000585/miR-615-5p/AMOT/YAP可能是iCCA发生的潜在通路,RT-PCR验证发现该通路中miR-615-5p在iCCA中显著下调(t=5.724,P<0.001),而AMOT和YAP分子在iCCA中显著上调(t值分别为2.664、2.986,P值分别为0.019、0.009 8)。  结论  多种circRNAs在iCCA中出现异常表达,其中circRNA_000585在iCCA中显著上调,其可能通过circRNA_000585/miR-615-5p/AMOT/YAP信号通路在iCCA的发生中发挥重要作用。

     

  • 图  1  iCCA与癌旁组织circRNAs表达的热图

    图  2  circRNAs表达的散点图和火山图

    注:a,散点图;b,火山图。

    图  3  与癌旁组织相比iCCA中上调的circRNAs

    图  4  与癌旁相比iCCA中下调的circRNAs

    图  5  iCCA与癌旁中circRNA_000585的表达情况

    图  6  iCCA与癌旁组织中mir-615-5p的表达情况

    图  7  iCCA与癌旁组织中AMOT的表达情况

    图  8  iCCA与癌旁组织中YAP的表达情况

    表  1  circRNA_000585和内参PCR信息

    基因名称 引物(5′-3′) 退火温度(℃) 扩增产物长度(bp)
    18S rRNA F: CAGCCACCCGAGATTGAGCA
    R: TAGTAGCGACGGGCGGTGTG 60 252
    hsa_circRNA_000585 F: GAGGTCAGACTGGGCAGGAGAT
    R: ACAGGACGCACTCAGTTCGCT 60 117
    下载: 导出CSV

    表  2  miR-615-5p和内参PCR信息

    基因名称 引物(5′-3′) 退火温度(℃) 扩增产物长度(bp)
    U6 F: GCTTCGGCAGCACATATACTAAAAT
    R: CGCTTCACGAATTTGCGTGTCAT 60 89
    hsa-miR-615-5p GSP: AAGGGGGTCCCCGGT 60 62
    R: GTGCGTGTCGTGGAGTCG
    下载: 导出CSV

    表  3  AMOT/YAP和内参PCR信息

    基因名称 引物(5′-3′) 退火温度(℃) 扩增产物长度(bp)
    AMOT F: TTGGAGGAGAATGTGATGAGAC
    R: TGGTGTTAGGAGAGTGACTGATG 60 97
    YAP F: GCCAGCAGGTTGGGAGAT
    R: TGTGATTTAAGAAGTATCTCTGACC 60 59
    18S rRNA F: CAGCCACCCGAGATTGAGCA
    R: TAGTAGCGACGGGCGGTGTG 60 252
    下载: 导出CSV
  • [1] RIZVI S, KHAN SA, HALLEMEIER CL, et al. Cholangiocarcinoma-evolving concepts and therapeutic strategies[J]. Nat Rev Clin Oncol, 2018, 15(2): 95-111. DOI: 10.1038/nrclinonc.2017.157.
    [2] VALLE J, WASAN H, PALMER DH, et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer[J]. N Engl J Med, 2010, 362(14): 1273-1281. DOI: 10.1056/NEJMoa0908721.
    [3] LABIB PL, GOODCHILD G, PEREIRA SP. Molecular pathogenesis of cholangiocarcinoma[J]. BMC Cancer, 2019, 19(1): 185. DOI: 10.1186/s12885-019-5391-0.
    [4] LI J, SUN D, PU W, et al. Circular RNAs in cancer: Biogenesis, function, and clinical significance[J]. Trends Cancer, 2020, 6(4): 319-336. DOI: 10.1016/j.trecan.2020.01.012.
    [5] JIANG XM, LI ZL, LI JL, et al. A novel prognostic biomarker for cholangiocarcinoma: circRNA Cdr1as[J]. Eur Rev Med Pharmacol Sci, 2018, 22(2): 365-371. DOI: 10.26355/eurrev_201801_14182.
    [6] LU Q, FANG T. Circular RNA SMARCA5 correlates with favorable clinical tumor features and prognosis, and increases chemotherapy sensitivity in intrahepatic cholangiocarcinoma[J]. J Clin Lab Anal, 2020, 34(4): e23138. DOI: 10.1002/jcla.23138.
    [7] LI D, TANG Z, GAO Z, et al. Circular RNA CDR1as exerts oncogenic properties partially through regulating MicroRNA 641 in cholangiocarcinoma[J]. Mol Cell Biol, 2020, 40(15). DOI: 10.1128/MCB.00042-20.
    [8] LOUIS C, DESOTEUX M, COULOUARN C. Exosomal circRNAs: New players in the field of cholangiocarcinoma[J]. Clin Sci (Lond), 2019, 133(21): 2239-2244. DOI: 10.1042/CS20190940.
    [9] MOIRANGTHEM A, WANG X, YAN IK, et al. Network analyses- based identification of circular ribonucleic acid-related pathways in intrahepatic cholangiocarcinoma[J]. Tumour Biol, 2018, 40(9): 1010428318795761. DOI: 10.1177/1010428318795761.
    [10] WANG S, HU Y, LV X, et al. Circ-0000284 arouses malignant phenotype of cholangiocarcinoma cells and regulates the biological functions of peripheral cells through cellular communication[J]. Clin Sci (Lond), 2019, 133(18): 1935-1953. DOI: 10.1042/CS20190589.
    [11] XU Y, YAO Y, ZHONG X, et al. Downregulated circular RNA hsa_circ_0001649 regulates proliferation, migration and invasion in cholangiocarcinoma cells[J]. Biochem Biophys Res Commun, 2018, 496(2): 455-461. DOI: 10.1016/j.bbrc.2018.01.077.
    [12] XU Y, YAO Y, LIU Y, et al. Elevation of circular RNA circ_0005230 facilitates cell growth and metastasis via sponging miR-1238 and miR-1299 in cholangiocarcinoma[J]. Aging (Albany NY), 2019, 11(7): 1907-1917. DOI: 10.18632/aging.101872.
    [13] GUO S, XU X, OUYANG Y, et al. Microarray expression profile analysis of circular RNAs in pancreatic cancer[J]. Mol Med Rep, 2018, 17(6): 7661-7671. DOI: 10.3892/mmr.2018.8827.
    [14] MUMTAZ PT, TABAN Q, DAR MA, et al. Deep insights in circular RNAs: From biogenesis to therapeutics[J]. Biol Proced Online, 2020, 22: 10. DOI: 10.1186/s12575-020-00122-8.
    [15] SONG H, LIU Q, LIAO Q. Circular RNA and tumor microenvironment[J]. Cancer Cell Int, 2020, 20: 211. DOI: 10.1186/s12935-020-01301-z.
    [16] LIANG ZZ, GUO C, ZOU MM, et al. circRNA-miRNA-mRNA regulatory network in human lung cancer: An update[J]. Cancer Cell Int, 2020, 20: 173. DOI: 10.1186/s12935-020-01245-4.
    [17] GODÍNEZ-RUBÍ M, ORTUÑO-SAHAGÚN D. miR-615 fine-tunes growth and development and has a role in cancer and in neural repair[J]. Cells, 2020, 9(7): 1566. DOI: 10.3390/cells9071566.
    [18] HUANG T, ZHOU Y, ZHANG J, et al. The physiological role of Motin family and its dysregulation in tumorigenesis[J]. J Transl Med, 2018, 16(1): 98. DOI: 10.1186/s12967-018-1466-y.
    [19] HONG W. Angiomotin'g YAP into the nucleus for cell proliferation and cancer development[J]. Sci Signal, 2013, 6(291): pe27. DOI: 10.1126/scisignal.2004573.
    [20] LV M, SHEN Y, YANG J, et al. Angiomotin family members: Oncogenes or tumor suppressors?[J]. Int J Biol Sci, 2017, 13(6): 772-781. DOI: 10.7150/ijbs.19603.
    [21] POCATERRA A, ROMANI P, DUPONT S. YAP/TAZ functions and their regulation at a glance[J]. J Cell Sci, 2020, 133(2): jcs230425. DOI: 10.1242/jcs.230425.
    [22] MA S, MENG Z, CHEN R, et al. The hippo pathway: Biology and pathophysiology[J]. Annu Rev Biochem, 2019, 88: 577-604. DOI: 10.1146/annurev-biochem-013118-111829.
    [23] SHAO DD, XUE W, KRALL EB, et al. KRAS and YAP1 converge to regulate EMT and tumor survival[J]. Cell, 2014, 158(1): 171-184. DOI: 10.1016/j.cell.2014.06.004.
    [24] YAMAGUCHI H, TAOUK GM. A potential role of YAP/TAZ in the interplay between metastasis and metabolic alterations[J]. Front Oncol, 2020, 10: 928. DOI: 10.3389/fonc.2020.00928.
    [25] MARTI P, STEIN C, BLUMER T, et al. YAP promotes proliferation, chemoresistance, and angiogenesis in human cholangiocarcinoma through TEAD transcription factors[J]. Hepatology, 2015, 62(5): 1497-1510. DOI: 10.1002/hep.27992.
    [26] PARK J, KIM JS, NAHM JH, et al. WWC1 and NF2 prevent the development of intrahepatic cholangiocarcinoma by regulating YAP/TAZ activity through LATS in mice[J]. Mol Cells, 2020, 43(5): 491-499. DOI: 10.14348/molcells.2020.0093.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  474
  • HTML全文浏览量:  110
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-20
  • 录用日期:  2021-03-08
  • 出版日期:  2021-10-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回