血管内皮间质样转分化遗传示踪小鼠模型的构建及其在肝纤维化研究中的应用
DOI: 10.3969/j.issn.1001-5256.2022.04.018
Establishment of a mouse model of vascular endothelial-mesenchymal transdifferentiation genetic tracing and its role in liver fibrosis studies
-
摘要:
目的 构建Cdh5-CreERT/Acta2-tdTomato-STOPfloxed-eGFP knockin遗传示踪小鼠, 并探究其在肝纤维化血管内皮细胞转化研究中的应用。 方法 将Cdh5-CreERT小鼠和Acta2-KI小鼠进行交配繁育, 经PCR基因型鉴定得到Cdh5-CreERT/Acta2-KI遗传示踪小鼠。通过分离、培养原代肝血窦内皮细胞(LSEC)和建立CCl4肝纤维化模型, 取LSEC和肝脏组织, 分别进行免疫荧光染色, 观察荧光蛋白tdTomato和eGFP的表达。 结果 经他莫昔芬诱导后, Cdh5-CreERT/Acta2-KI遗传示踪小鼠的LSEC和肝脏组织在体内外建立的内皮-间质样转分化条件下可表达eGFP, 而未经诱导的对照组只表达tdTomato。 结论 成功构建的Cdh5-CreERT/Acta2-KI遗传示踪小鼠可实现对血管内皮-间质样转分化的有效标记, 并为肝纤维化中肌纤维母细胞来源的多样性提供新的遗传示踪学依据。 Abstract:Objective To establish Cdh5-CreERT/Acta2-tdTomato-STOPfloxed-eGFP knockin genetic tracing mice, and to investigate its application in studies on vascular endothelial cell transition in liver fibrosis. Methods Cdh5-CreERT mice were mated with Acta2-KI mice, and the Cdh5-CreERT/Acta2-KI genetic tracing mice were obtained and identified by PCR genotyping. Primary liver sinusoid endothelial cells (LSECs) were isolated and cultured, and a model of CCl4-induced liver fibrosis was established. LSECs and liver tissue were collected for immunofluorescent staining to observe the expression of the fluorescent proteins tdTomato and eGFP. Results After being induced by tamoxifen, LSECs and liver tissue of Cdh5-CreERT/Acta2-KI genetic tracing mice expressed eGFP under the conditions for epithelial-mesenchymal transdifferentiation established in vivo and in vitro, while the control group without induction expressed tdTomato alone. Conclusion The successfully established Cdh5-CreERT/Acta2-KI genetic tracing mice can realize the effective labeling of epithelial-mesenchymal transdifferentiation, which provides a genetic tracing basis for the diverse sources of mesenchymal myofibroblasts in liver fibrosis. -
Key words:
- Liver Cirrhosis /
- Epithelial-Mesenchymal Transition /
- Endothelial Cells /
- Mice
-
表 1 PCR扩增引物
Table 1. PCR amplification primer
引物名称 引物序列(5′-3′) 引物类别 Cdh5 N1 CCGGTCGATGCAACGAGTGATGAGG 正向引物 Cdh5 N2 GCCTCCAGCTTGCATGATCTCCGG 反向引物 Acta2 5F1 AAAGCTGATGCTTGCCACTTC 突变型正向引物 Acta2 5R1 GATGACGGCCATGTTGTTGTC 突变型反向引物 Acta2 wtF3 CAGCTATGTGTGAAGAGGAAGACAG 野生型正向引物 Acta2 wtR3 GCACCTTGAACCACTAGGTTATATCC 野生型反向引物 -
[1] LEE UE, FRIEDMAN SL. Mechanisms of hepatic fibrogenesis[J]. Best Pract Res Clin Gastroenterol, 2011, 25(2): 195-206. DOI: 10.1016/j.bpg.2011.02.005. [2] MEDERACKE I, HSU CC, TROEGER JS, et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology[J]. Nat Commun, 2013, 4: 2823. DOI: 10.1038/ncomms3823. [3] RAY K. Liver: hepatic stellate cells hold the key to liver fibrosis[J]. Nat Rev Gastroenterol Hepatol, 2014, 11(2): 74. DOI: 10.1038/nrgastro.2013.244. [4] PIERA-VELAZQUEZ S, MENDOZA FA, JIMENEZ SA. Endothelial to mesenchymal transition (EndoMT) in the pathogenesis of human fibrotic diseases[J]. J Clin Med, 2016, 5(4): 45. DOI: 10.3390/jcm5040045. [5] SUN X, NKENNOR B, MASTIKHINA O, et al. Endothelium-mediated contributions to fibrosis[J]. Semin Cell Dev Biol, 2020, 101: 78-86. DOI: 10.1016/j.semcdb.2019.10.015. [6] RUAN B, DUAN JL, XU H, et al. Capillarized liver sinusoidal endothelial cells undergo partial endothelial-mesenchymal transition to actively deposit sinusoidal ECM in liver fibrosis[J]. Front Cell Dev Biol, 2021, 9: 671081. DOI: 10.3389/fcell.2021.671081. [7] THOMSON JG, RUCKER EB 3rd, PIEDRAHITA JA. Mutational analysis of loxP sites for efficient Cre-mediated insertion into genomic DNA[J]. Genesis, 2003, 36(3): 162-167. DOI: 10.1002/gene.10211. [8] KOS CH. Cre/loxP system for generating tissue-specific knockout mouse models[J]. Nutr Rev, 2004, 62(6 Pt 1): 243-246. DOI: 10.1301/nr2004.jun243-246. [9] JIANG ZJ, YUE ZS, YANG YC, et al. Improvement method of isolation of mouse liver Sinusoidal endothelial cell[J]. Prog Mod Biomed, 2018, 18(6): 1034-1039. DOI: 10.13241/j.cnki.pmb.2018.06.007.蒋子剑, 岳振生, 杨毅聪, 等. 小鼠肝血窦内皮细胞分离与鉴定新方法[J]. 现代生物医学进展, 2018, 18(6): 1034-1039. DOI: 10.13241/j.cnki.pmb.2018.06.007. [10] WANG S, FRIEDMAN SL. Hepatic fibrosis: A convergent response to liver injury that is reversible[J]. J Hepatol, 2020, 73(1): 210-211. DOI: 10.1016/j.jhep.2020.03.011. [11] TERKELSEN MK, BENDIXEN SM, HANSEN D, et al. Transcriptional dynamics of hepatic sinusoid-associated cells after liver injury[J]. Hepatology, 2020, 72(6): 2119-2133. DOI: 10.1002/hep.31215. [12] TRAUTWEIN C, FRIEDMAN SL, SCHUPPAN D, et al. Hepatic fibrosis: Concept to treatment[J]. J Hepatol, 2015, 62(1 Suppl): S15-S24. DOI: 10.1016/j.jhep.2015.02.039. [13] ZEISBERG EM, TARNAVSKI O, ZEISBERG M, et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis[J]. Nat Med, 2007, 13(8): 952-961. DOI: 10.1038/nm1613. [14] ZEISBERG EM, POTENTA SE, SUGIMOTO H, et al. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition[J]. J Am Soc Nephrol, 2008, 19(12): 2282-2287. DOI: 10.1681/ASN.2008050513. [15] HASHIMOTO N, PHAN SH, IMAIZUMI K, et al. Endothelial-mesenchymal transition in bleomycin-induced pulmonary fibrosis[J]. Am J Respir Cell Mol Biol, 2010, 43(2): 161-172. DOI: 10.1165/rcmb.2009-0031OC.