中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

急性胰腺炎胰酶异常活化和分泌的分子机制

崔恬玉 刘瑞霞 阴赪宏

引用本文:
Citation:

急性胰腺炎胰酶异常活化和分泌的分子机制

DOI: 10.3969/j.issn.1001-5256.2022.05.047
基金项目: 

北京市教育委员会科技计划一般项目 (KM201910025007);

国家自然科学基金 (81571933)

利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:崔恬玉负责拟定写作思路,检索文献,撰写论文; 刘瑞霞、阴赪宏负责指导、修改论文并最终定稿。
详细信息
    通信作者:

    阴赪宏,yinchh@ccmu.edu.cn

Research advances in abnormal activation and secretion of pancreatic enzymes in acute pancreatitis

Research funding: 

Beijing Municipal Commission of Education (KM201910025007);

National Natural Science Foundation of China (81571933)

More Information
  • 摘要: 胰腺腺泡细胞内胰酶异常活化和分泌是急性胰腺炎(AP)的重要发病机制之一,可直接损伤胰腺组织加速疾病进程,诱发重症急性胰腺炎。目前临床抑制胰酶异常活化和分泌的药物效果欠佳,探寻新的治疗靶点十分重要。本文归纳了AP胰酶异常活化和分泌的病理事件(胞浆钙离子超载、溶酶体与酶原颗粒的共定位、细胞器损伤、胰酶顶端侧分泌受阻和基底侧分泌增加等),搜集了相关事件的分子机制,讨论了胰酶异常活化和分泌在AP早期的作用过程,为未来靶向药物的研发提供思路。

     

  • 图  1  VAMP8介导的顶端侧分泌受损和基底侧分泌增强示意图

    Figure  1.  Schematic illustration of VAMP8-mediated impaired apical secretion and enhanced basal secretion

  • [1] LEE PJ, PAPACHRISTOU GI. New insights into acute pancreatitis[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(8): 479-496. DOI: 10.1038/s41575-019-0158-2.
    [2] ZHANG W, ZHANG M, KUANG Z, et al. The risk factors for acute respiratory distress syndrome in patients with severe acute pancreatitis: A retrospective analysis[J]. Medicine (Baltimore), 2021, 100(2): e23982. DOI: 10.1097/MD.0000000000023982.
    [3] LEPPÄNIEMI A, TOLONEN M, TARASCONI A, et al. 2019 WSES guidelines for the management of severe acute pancreatitis[J]. World J Emerg Surg, 2019, 14: 27. DOI: 10.1186/s13017-019-0247-0.
    [4] HAO S, DANG DS. Clinical observation of octreotide in the treatment of acute pancreatitis at different time of administration[J]. Chin J Med Offic, 2020, 48(7): 761-764. DOI: 10.16680/j.1671-3826.2020.07.04.

    郝双, 党大胜. 奥曲肽不同给药时机治疗急性胰腺炎临床效果观察[J]. 临床军医杂志, 2020, 48(7): 761-764. DOI: 10.16680/j.1671-3826.2020.07.04.
    [5] QI H, CHEN G, WANG YW, et al. Effects of magnesium isoglycyrrhizinate combined with octreotide on acute pancreatitis and its effect on hs-CRP、IL-1β、IL-6 levels[J]. J Changchun Univ Chin Med, 2020, 36(3): 520-522. DOI: 10.13463/j.cnki.cczyy.2020.03.032.

    齐宏, 陈广, 王渊文, 等. 异甘草酸镁联合奥曲肽治疗急性胰腺炎的临床疗效及对hs-CRP、IL-1β、IL-6水平的影响[J]. 长春中医药大学学报, 2020, 36(3): 520-522. DOI: 10.13463/j.cnki.cczyy.2020.03.032.
    [6] GUKOVSKAYA AS, GORELICK FS, GROBLEWSKI GE, et al. Recent insights into the pathogenic mechanism of pancreatitis: Role of acinar cell organelle disorders[J]. Pancreas, 2019, 48(4): 459-470. DOI: 10.1097/MPA.0000000000001298.
    [7] MAYERLE J, SENDLER M, HEGYI E, et al. Genetics, cell biology, and pathophysiology of pancreatitis[J]. Gastroenterology, 2019, 156(7): 1951-1968. e1. DOI: 10.1053/j.gastro.2018.11.081.
    [8] PALLAGI P, MADÁCSY T, VARGA Á, et al. Intracellular Ca2+ signalling in the pathogenesis of acute pancreatitis: Recent advances and translational perspectives[J]. Int J Mol Sci, 2020, 21(11): 4005. DOI: 10.3390/ijms21114005.
    [9] WENG N, BAUMLER MD, THOMAS DD, et al. Functional role of J domain of cysteine string protein in Ca2+-dependent secretion from acinar cells[J]. Am J Physiol Gastrointest Liver Physiol, 2009, 296(5): G1030-1039. DOI: 10.1152/ajpgi.90592.2008.
    [10] CRIDDLE DN, MCLAUGHLIN E, MURPHY JA, et al. The pancreas misled: Signals to pancreatitis[J]. Pancreatology, 2007, 7(5-6): 436-446. DOI: 10.1159/000108960.
    [11] LEE KP, YUAN JP, HONG JH, et al. An endoplasmic reticulum/plasma membrane junction: STIM1/Orai1/TRPCs[J]. FEBS Lett, 2010, 584(10): 2022-2027. DOI: 10.1016/j.febslet.2009.11.078.
    [12] MUKHERJEE R, MARENINOVA OA, ODINOKOVA IV, et al. Mechanism of mitochondrial permeability transition pore induction and damage in the pancreas: Inhibition prevents acute pancreatitis by protecting production of ATP[J]. Gut, 2016, 65(8): 1333-1346. DOI: 10.1136/gutjnl-2014-308553.
    [13] PETERSEN OH, GERASIMENKO JV, GERASIMENKO OV, et al. The roles of calcium and ATP in the physiology and pathology of the exocrine pancreas[J]. Physiol Rev, 2021, 101(4): 1691-1744. DOI: 10.1152/physrev.00003.2021.
    [14] ELMUNZER BJ, SERRANO J, CHAK A, et al. Rectal indomethacin alone versus indomethacin and prophylactic pancreatic stent placement for preventing pancreatitis after ERCP: Study protocol for a randomized controlled trial[J]. Trials, 2016, 17(1): 120. DOI: 10.1186/s13063-016-1251-2.
    [15] SHAH AU, SARWAR A, ORABI AI, et al. Protease activation during in vivo pancreatitis is dependent on calcineurin activation[J]. Am J Physiol Gastrointest Liver Physiol, 2009, 297(5): G967-973. DOI: 10.1152/ajpgi.00181.2009.
    [16] MITHÖFER K, FERNÁNDEZ-DEL CASTILLO C, FRICK TW, et al. Acute hypercalcemia causes acute pancreatitis and ectopic trypsinogen activation in the rat[J]. Gastroenterology, 1995, 109(1): 239-246. DOI: 10.1016/0016-5085(95)90290-2.
    [17] ORABI AI, SHAH AU, AHMAD MU, et al. Dantrolene mitigates caerulein-induced pancreatitis in vivo in mice[J]. Am J Physiol Gastrointest Liver Physiol, 2010, 299(1): G196-204. DOI: 10.1152/ajpgi.00498.2009.
    [18] HALANGK W, LERCH MM, BRANDT-NEDELEV B, et al. Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis[J]. J Clin Invest, 2000, 106(6): 773-781. DOI: 10.1172/JCI9411.
    [19] TALUKDAR R, SAREEN A, ZHU H, et al. Release of cathepsin B in cytosol causes cell death in acute pancreatitis[J]. Gastroenterology, 2016, 151(4): 747-758. e5. DOI: 10.1053/j.gastro.2016.06.042.
    [20] SALUJA A, DUDEJA V, DAWRA R, et al. Early intra-acinar events in pathogenesis of pancreatitis[J]. Gastroenterology, 2019, 156(7): 1979-1993. DOI: 10.1053/j.gastro.2019.01.268.
    [21] SENDLER M, WEISS FU, GOLCHERT J, et al. Cathepsin B-mediated activation of trypsinogen in endocytosing macrophages increases severity of pancreatitis in mice[J]. Gastroenterology, 2018, 154(3): 704-718. e10. DOI: 10.1053/j.gastro.2017.10.018.
    [22] CHENG L, HAN ST. Research Progress on the mechanism of endoplasmic reticulum stress response in acute pancreatitis[J]. Chin J Pancreatol, 2019, 19(1): 69-72. DOI: 10.3760/cma.j.issn.1674-1935.2019.01.018.

    程璐, 韩树堂. 急性胰腺炎内质网应激反应机制研究进展[J]. 中华胰腺病杂志, 2019, 19(1): 69-72. DOI: 10.3760/cma.j.issn.1674-1935.2019.01.018.
    [23] SZMOLA R, SAHIN-TÓTH M. Pancreatitis-associated chymotrypsinogen C (CTRC) mutant elicits endoplasmic reticulum stress in pancreatic acinar cells[J]. Gut, 2010, 59(3): 365-372. DOI: 10.1136/gut.2009.198903.
    [24] ANTONUCCI L, FAGMAN JB, KIM JY, et al. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress[J]. Proc Natl Acad Sci U S A, 2015, 112(45): E6166-6174. DOI: 10.1073/pnas.1519384112.
    [25] WARTMANN T, MAYERLE J, KÄHNE T, et al. Cathepsin L inactivates human trypsinogen, whereas cathepsin L-deletion reduces the severity of pancreatitis in mice[J]. Gastroenterology, 2010, 138(2): 726-737. DOI: 10.1053/j.gastro.2009.10.048.
    [26] BICZO G, VEGH ET, SHALBUEVA N, et al. Mitochondrial dysfunction, through impaired autophagy, leads to endoplasmic reticulum stress, deregulated lipid metabolism, and pancreatitis in animal models[J]. Gastroenterology, 2018, 154(3): 689-703. DOI: 10.1053/j.gastro.2017.10.012.
    [27] DENG SJ, ZOU WB, LIAO Z. Research progress on the mechanism of carboxyl ester lipase in the pathogenesis of pancreatic diseases[J]. Chin J Pancreatol, 2020, 20(1): 66-69. DOI: 10.3760/cma.j.issn.1674-1935.2020.01.014.

    邓顺江, 邹文斌, 廖专. 羧基酯脂肪酶在胰腺疾病发病中的作用机制研究进展[J]. 中华胰腺病杂志, 2020, 20(1): 66-69. DOI: 10.3760/cma.j.issn.1674-1935.2020.01.014.
    [28] LUGEA A, GERLOFF A, SU HY, et al. The combination of alcohol and cigarette smoke induces endoplasmic reticulum stress and cell death in pancreatic acinar cells[J]. Gastroenterology, 2017, 153(6): 1674-1686. DOI: 10.1053/j.gastro.2017.08.036.
    [29] ZELIC M, RODERICK JE, O'DONNELL JA, et al. RIP kinase 1-dependent endothelial necroptosis underlies systemic inflammatory response syndrome[J]. J Clin Invest, 2018, 128(5): 2064-2075. DOI: 10.1172/JCI96147.
    [30] HASHIMOTO D, OHMURAYA M, HIROTA M, et al. Involvement of autophagy in trypsinogen activation within the pancreatic acinar cells[J]. J Cell Biol, 2008, 181(7): 1065-1072. DOI: 10.1083/jcb.200712156.
    [31] LI N, WU X, HOLZER RG, et al. Loss of acinar cell IKKα triggers spontaneous pancreatitis in mice[J]. J Clin Invest, 2013, 123(5): 2231-2243. DOI: 10.1172/JCI64498.
    [32] MESSENGER SW, JONES EK, HOLTHAUS CL, et al. Acute acinar pancreatitis blocks vesicle-associated membrane protein 8 (VAMP8)-dependent secretion, resulting in intracellular trypsin accumulation[J]. J Biol Chem, 2017, 292(19): 7828-7839. DOI: 10.1074/jbc.M117.781815.
    [33] MIZUNO-YAMASAKI E, RIVERA-MOLINA F, NOVICK P. GTPase networks in membrane traffic[J]. Annu Rev Biochem, 2012, 81: 637-659. DOI: 10.1146/annurev-biochem-052810-093700.
    [34] MESSENGER SW, FALKOWSKI MA, THOMAS DD, et al. Vesicle associated membrane protein 8 (VAMP8)-mediated zymogen granule exocytosis is dependent on endosomal trafficking via the constitutive-like secretory pathway[J]. J Biol Chem, 2014, 289(40): 28040-28053. DOI: 10.1074/jbc.M114.593913.
    [35] MESSENGER SW, THOMAS DD, COOLEY MM, et al. Early to late endosome trafficking controls secretion and zymogen activation in rodent and human pancreatic acinar cells[J]. Cell Mol Gastroenterol Hepatol, 2015, 1(6): 695-709. DOI: 10.1016/j.jcmgh.2015.08.002.
    [36] CHVANOV M, DE FAVERI F, MOORE D, et al. Intracellular rupture, exocytosis and actin interaction of endocytic vacuoles in pancreatic acinar cells: Initiating events in acute pancreatitis[J]. J Physiol, 2018, 596(13): 2547-2564. DOI: 10.1113/JP275879.
    [37] NEULAND K, FRICK M. Vesicular control of fusion pore expansion[J]. Commun Integr Biol, 2015, 8(2): e1018496. DOI: 10.1080/19420889.2015.1018496.
  • 加载中
图(1)
计量
  • 文章访问数:  574
  • HTML全文浏览量:  206
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-31
  • 录用日期:  2021-10-08
  • 出版日期:  2022-05-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回