中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 40 Issue 8
Aug.  2024
Turn off MathJax
Article Contents

Association of lipid metabolism reprogramming with the development and progression of primary liver cancer

DOI: 10.12449/JCH240829
Research funding:

National Natural Science Foundation of China (82274434);

National Natural Science Foundation of China (81960841);

National Natural Science Foundation of China (82060848);

Guangxi Natural Science Foundation (2020GXNSFBA297115);

Guangxi Natural Science Foundation (2020GXNSFAA297070);

Doctoral Start-up Fund of Guangxi University of Chinese Medicine (2020BS026);

The First Affiliated Hospital of Guangxi University of Chinese Medicine Doctoral Start-up Fund (2020BS003);

Innovation Project of Guangxi Graduate Education (YCSW2023378);

Innovation Project of Guangxi Graduate Education (YCBZ2023157);

Innovation Project of Guangxi Graduate Education (YCSW2023384);

Innovation Project of Guangxi Graduate Education of GXUCM (YCSY2022024);

Project on Enhancement of Basic Research Ability of Young and Middle-aged Teachers in Guangxi Universities and Colleges (2022KY0284);

Project on Enhancement of Basic Research Ability of Young and Middle-aged Teachers in Guangxi Universities and Colleges (2023KY0324)

More Information
  • Corresponding author: WANG Minggang, wmgyx2012@163.com (ORCID: 0000-0002-2781-6777)
  • Received Date: 2023-09-28
  • Accepted Date: 2023-11-08
  • Published Date: 2024-08-25
  • Lipid metabolism, as the basis of life maintenance, is a prerequisite for cell survival, and lipid homeostasis can rapidly respond to metabolic changes in a coordinated manner. In cancers, there is an increase in lipid metabolism in cancer cells to meet the requirements for plasma membrane synthesis and energy production. Abnormal lipid metabolism plays an important role in the progression of primary liver cancer. This article reviews the association between abnormal lipid metabolism and primary liver cancer, in order to find targets for the prevention and treatment of primary liver cancer.

     

  • loading
  • [1]
    LI X, RAMADORI P, PFISTER D, et al. The immunological and metabolic landscape in primary and metastatic liver cancer[J]. Nat Rev Cancer, 2021, 21( 9): 541- 557. DOI: 10.1038/s41568-021-00383-9.
    [2]
    JIANG TT, SUN FF, ZENG Z, et al. Progress on metabolic associated fatty liver disease related liver cancer[J/CD]. Chin J Liver Dis(Electronic Version), 2022, 14( 3): 14- 17. DOI: 10.3969/j.issn.1674-7380.2022.03.004.

    蒋婷婷, 孙芳芳, 曾湛, 等. 代谢相关脂肪性肝病相关肝癌研究进展[J/CD]. 中国肝脏病杂志(电子版), 2022, 14( 3): 14- 17. DOI: 10.3969/j.issn.1674-7380.2022.03.004.
    [3]
    SIA D, VILLANUEVA A, FRIEDMAN SL, et al. Liver cancer cell of origin, molecular class, and effects on patient prognosis[J]. Gastroenterology, 2017, 152( 4): 745- 761. DOI: 10.1053/j.gastro.2016.11.048.
    [4]
    CHIANG CL, CHIU KWH, CHAN KSK, et al. Sequential transarterial chemoembolisation and stereotactic body radiotherapy followed by immunotherapy as conversion therapy for patients with locally advanced, unresectable hepatocellular carcinoma(START-FIT): A single-arm, phase 2 trial[J]. Lancet Gastroenterol Hepatol, 2023, 8( 2): 169- 178. DOI: 10.1016/S2468-1253(22)00339-9.
    [5]
    RUFF SM, SHANNON AH, PAWLIK TM. Advances in targeted immunotherapy for hepatobiliary cancers[J]. Int J Mol Sci, 2022, 23( 22): 13961. DOI: 10.3390/ijms232213961.
    [6]
    CHOW A, PERICA K, KLEBANOFF CA, et al. Clinical implications of T cell exhaustion for cancer immunotherapy[J]. Nat Rev Clin Oncol, 2022, 19( 12): 775- 790. DOI: 10.1038/s41571-022-00689-z.
    [7]
    ALANNAN M, FAYYAD-KAZAN H, TRÉZÉGUET V, et al. Targeting lipid metabolism in liver cancer[J]. Biochemistry, 2020, 59( 41): 3951- 3964. DOI: 10.1021/acs.biochem.0c00477.
    [8]
    SKILL NJ, SCOTT RE, WU JM, et al. Hepatocellular carcinoma associated lipid metabolism reprogramming[J]. J Surg Res, 2011, 169( 1): 51- 56. DOI: 10.1016/j.jss.2009.09.005.
    [9]
    HAO Y, LI DX, XU Y, et al. Investigation of lipid metabolism dysregulation and the effects on immune microenvironments in pan-cancer using multiple omics data[J]. BMC Bioinformatics, 2019, 20( Suppl 7): 195. DOI: 10.1186/s12859-019-2734-4.
    [10]
    YU WN, LEI QY, YANG L, et al. Contradictory roles of lipid metabolism in immune response within the tumor microenvironment[J]. J Hematol Oncol, 2021, 14( 1): 187. DOI: 10.1186/s13045-021-01200-4.
    [11]
    COCKCROFT S. Mammalian lipids: Structure, synthesis and function[J]. Essays Biochem, 2021, 65( 5): 813- 845. DOI: 10.1042/EBC20200067.
    [12]
    GUO DL, BELL EH, MISCHEL P, et al. Targeting SREBP-1-driven lipid metabolism to treat cancer[J]. Curr Pharm Des, 2014, 20( 15): 2619- 2626. DOI: 10.2174/13816128113199990486.
    [13]
    REPA JJ, MANGELSDORF DJ. The role of orphan nuclear receptors in the regulation of cholesterol homeostasis[J]. Annu Rev Cell Dev Biol, 2000, 16: 459- 481. DOI: 10.1146/annurev.cellbio.16.1.459.
    [14]
    GUO YJ, ZHAO M, BO T, et al. Blocking FSH inhibits hepatic cholesterol biosynthesis and reduces serum cholesterol[J]. Cell Res, 2019, 29( 2): 151- 166. DOI: 10.1038/s41422-018-0123-6.
    [15]
    SAHA P, SHUMATE JL, CALDWELL JG, et al. Inter-domain dynamics drive cholesterol transport by NPC1 and NPC1L1 proteins[J]. Elife, 2020, 9: e57089. DOI: 10.7554/eLife.57089.
    [16]
    van de SLUIS B, WIJERS M, HERZ J. News on the molecular regulation and function of hepatic low-density lipoprotein receptor and LDLR-related protein 1[J]. Curr Opin Lipidol, 2017, 28( 3): 241- 247. DOI: 10.1097/MOL.0000000000000411.
    [17]
    LI ZY, ZHANG HF. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression[J]. Cell Mol Life Sci, 2016, 73( 2): 377- 392. DOI: 10.1007/s00018-015-2070-4.
    [18]
    CHENG CM, GENG F, CHENG X, et al. Lipid metabolism reprogramming and its potential targets in cancer[J]. Cancer Commun(Lond), 2018, 38( 1): 27. DOI: 10.1186/s40880-018-0301-4.
    [19]
    ZHANG M, WEI TJ, ZHANG XD, et al. Targeting lipid metabolism reprogramming of immunocytes in response to the tumor microenvironment stressor: A potential approach for tumor therapy[J]. Front Immunol, 2022, 13: 937406. DOI: 10.3389/fimmu.2022.937406.
    [20]
    BACCI M, LORITO N, SMIRIGLIA A, et al. Fat and furious: Lipid metabolism in antitumoral therapy response and resistance[J]. Trends Cancer, 2021, 7( 3): 198- 213. DOI: 10.1016/j.trecan.2020.10.004.
    [21]
    CHEN EB, YI J, JIANG J, et al. Identification and validation of a fatty acid metabolism-related lncRNA signature as a predictor for prognosis and immunotherapy in patients with liver cancer[J]. BMC Cancer, 2022, 22( 1): 1037. DOI: 10.1186/s12885-022-10122-4.
    [22]
    TIAN W, PANG WX, GE Y, et al. Hepatocyte-generated 27-hydroxycholesterol promotes the growth of melanoma by activation of estrogen receptor alpha[J]. J Cell Biochem, 2018, 119( 3): 2929- 2938. DOI: 10.1002/jcb.26498.
    [23]
    LI YJ, KASIM V, YAN XS, et al. Yin Yang 1 facilitates hepatocellular carcinoma cell lipid metabolism and tumor progression by inhibiting PGC-1β-induced fatty acid oxidation[J]. Theranostics, 2019, 9( 25): 7599- 7615. DOI: 10.7150/thno.34931.
    [24]
    XIA LZ, OYANG L, LIN JG, et al. The cancer metabolic reprogramming and immune response[J]. Mol Cancer, 2021, 20( 1): 28. DOI: 10.1186/s12943-021-01316-8.
    [25]
    PAN MX, QIN C, HAN XL. Lipid metabolism and lipidomics applications in cancer research[J]. Adv Exp Med Biol, 2021, 1316: 1- 24. DOI: 10.1007/978-981-33-6785-2_1.
    [26]
    BROADFIELD LA, PANE AA, TALEBI A, et al. Lipid metabolism in cancer: New perspectives and emerging mechanisms[J]. Dev Cell, 2021, 56( 10): 1363- 1393. DOI: 10.1016/j.devcel.2021.04.013.
    [27]
    WANG MD, HAN J, XING H, et al. Dysregulated fatty acid metabolism in hepatocellular carcinoma[J]. Hepat Oncol, 2016, 3( 4): 241- 251. DOI: 10.2217/hep-2016-0012.
    [28]
    WANG B, ZHANG H, CHEN YF, et al. Acyl-CoA thioesterase 9 promotes tumour growth and metastasis through reprogramming of fatty acid metabolism in hepatocellular carcinoma[J]. Liver Int, 2022, 42( 11): 2548- 2561. DOI: 10.1111/liv.15409.
    [29]
    TOMACHA J, DOKDUANG H, PADTHAISONG S, et al. Targeting fatty acid synthase modulates metabolic pathways and inhibits cholangiocarcinoma cell progression[J]. Front Pharmacol, 2021, 12: 696961. DOI: 10.3389/fphar.2021.696961.
    [30]
    NATH A, LI I, ROBERTS LR, et al. Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma[J]. Sci Rep, 2015, 5: 14752. DOI: 10.1038/srep14752.
    [31]
    XU HJ, ZHOU S, TANG QL, et al. Cholesterol metabolism: New functions and therapeutic approaches in cancer[J]. Biochim Biophys Acta Rev Cancer, 2020, 1874( 1): 188394. DOI: 10.1016/j.bbcan.2020.188394.
    [32]
    WANG HL, SHANG XY, WAN X, et al. Increased hepatocellular carcinoma risk in chronic hepatitis B patients with persistently elevated serum total bile acid: A retrospective cohort study[J]. Sci Rep, 2016, 6: 38180. DOI: 10.1038/srep38180.
    [33]
    THOMAS CE, LUU HN, WANG RW, et al. Association between pre-diagnostic serum bile acids and hepatocellular carcinoma: The Singapore Chinese health study[J]. Cancers(Basel), 2021, 13( 11): 2648. DOI: 10.3390/cancers13112648.
    [34]
    WANG CZ, YANG MY, ZHAO JF, et al. Bile salt(glycochenodeoxycholate acid) induces cell survival and chemoresistance in hepatocellular carcinoma[J]. J Cell Physiol, 2019, 234( 7): 10899- 10906. DOI: 10.1002/jcp.27905.
    [35]
    XIE GX, WANG XN, HUANG FJ, et al. Dysregulated hepatic bile acids collaboratively promote liver carcinogenesis[J]. Int J Cancer, 2016, 139( 8): 1764- 1775. DOI: 10.1002/ijc.30219.
    [36]
    RESSOM HW, XIAO JF, TULI L, et al. Utilization of metabolomics to identify serum biomarkers for hepatocellular carcinoma in patients with liver cirrhosis[J]. Anal Chim Acta, 2012, 743: 90- 100. DOI: 10.1016/j.aca.2012.07.013.
    [37]
    GAO CQ, CHU ZZ, ZHANG D, et al. Serine/threonine kinase TBK1 promotes cholangiocarcinoma progression via direct regulation of β-catenin[J]. Oncogene, 2023, 42( 18): 1492- 1507. DOI: 10.1038/s41388-023-02651-4.
    [38]
    PAUL B, LEWINSKA M, ANDERSEN JB. Lipid alterations in chronic liver disease and liver cancer[J]. JHEP Rep, 2022, 4( 6): 100479. DOI: 10.1016/j.jhepr.2022.100479.
    [39]
    SZLASA W, ZENDRAN I, ZALESIŃSKA A, et al. Lipid composition of the cancer cell membrane[J]. J Bioenerg Biomembr, 2020, 52( 5): 321- 342. DOI: 10.1007/s10863-020-09846-4.
    [40]
    POMYEN Y, CHAISAINGMONGKOL J, RABIBHADANA S, et al. Gut dysbiosis in Thai intrahepatic cholangiocarcinoma and hepatocellular carcinoma[J]. Sci Rep, 2023, 13( 1): 11406. DOI: 10.1038/s41598-023-38307-2.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (187) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return