[1] |
MOREAU R, JALAN R, GINES P, et al. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis[J]. Gastroenterology, 2013, 144( 7): 1426- 1437. e 9. DOI: 10.1053/j.gastro.2013.02.042.
|
[2] |
MIAO N, WANG FZ, ZHENG H, et al. Estimation of incidence of viral hepatitis B and analysis on case characteristics in China, 2013-2020[J]. Chin J Epidemiol, 2021, 42( 9): 1527- 1531. DOI: 10.3760/cma.j.cn112338-20210319-00227.
缪宁, 王富珍, 郑徽, 等. 中国2013—2020年乙型肝炎发病情况估算和病例特征分析[J]. 中华流行病学杂志, 2021, 42( 9): 1527- 1531. DOI: 10.3760/cma.j.cn112338-20210319-00227.
|
[3] |
ARROYO V, MOREAU R, JALAN R. Acute-on-chronic liver failure[J]. N Engl J Med, 2020, 382( 22): 2137- 2145. DOI: 10.1056/nejmra1914900.
|
[4] |
JALAN R, GUSTOT T, FERNANDEZ J, et al.‘Equity’ and‘Justice’ for patients with acute-on chronic liver failure: A call to action[J]. J Hepatol, 2021, 75( 5): 1228- 1235. DOI: 10.1016/j.jhep.2021.06.017.
|
[5] |
LING SB, JIANG GJ, QUE QY, et al. Liver transplantation in patients with liver failure: Twenty years of experience from China[J]. Liver Int, 2022, 42( 9): 2110- 2116. DOI: 10.1111/liv.15288.
|
[6] |
LI P, LIANG X, LUO JJ, et al. Predicting the survival benefit of liver transplantation in HBV-related acute-on-chronic liver failure: An observational cohort study[J]. Lancet Reg Health West Pac, 2022, 32: 100638. DOI: 10.1016/j.lanwpc.2022.100638.
|
[7] |
YANG LS, SHAN LL, SAXENA A, et al. Liver transplantation: A systematic review of long-term quality of life[J]. Liver Int, 2014, 34( 9): 1298- 1313. DOI: 10.1111/liv.12553.
|
[8] |
HERNAEZ R, LIU Y, KRAMER JR, et al. Model for end-stage liver disease-sodium underestimates 90-day mortality risk in patients with acute-on-chronic liver failure[J]. J Hepatol, 2020, 73( 6): 1425- 1433. DOI: 10.1016/j.jhep.2020.06.005.
|
[9] |
PUGH RN, MURRAY-LYON IM, DAWSON JL, et al. Transection of the oesophagus for bleeding oesophageal varices[J]. Br J Surg, 1973, 60( 8): 646- 649. DOI: 10.1002/bjs.1800600817.
|
[10] |
MALINCHOC M, KAMATH PS, GORDON FD, et al. A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts[J]. Hepatology, 2000, 31( 4): 864- 871. DOI: 10.1053/he.2000.5852.
|
[11] |
KNAUS WA, ZIMMERMAN JE, WAGNER DP, et al. APACHE-acute physiology and chronic health evaluation: A physiologically based classification system[J]. Crit Care Med, 1981, 9( 8): 591- 597. DOI: 10.1097/00003246-198108000-00008.
|
[12] |
HERNAEZ R, SOLÀ E, MOREAU R, et al. Acute-on-chronic liver failure: An update[J]. Gut, 2017, 66( 3): 541- 553. DOI: 10.1136/gutjnl-2016-312670.
|
[13] |
CHOUDHURY A, JINDAL A, MAIWALL R, et al. Liver failure determines the outcome in patients of acute-on-chronic liver failure(ACLF): Comparison of APASL ACLF research consortium(AARC) and CLIF-SOFA models[J]. Hepatol Int, 2017, 11( 5): 461- 471. DOI: 10.1007/s12072-017-9816-z.
|
[14] |
WU T, LI J, SHAO L, et al. Development of diagnostic criteria and a prognostic score for hepatitis B virus-related acute-on-chronic liver failure[J]. Gut, 2018, 67( 12): 2181- 2191. DOI: 10.1136/gutjnl-2017-314641.
|
[15] |
DEO RC. Machine learning in medicine[J]. Circulation, 2015, 132( 20): 1920- 1930. DOI: 10.1161/CIRCULATIONAHA.115.001593.
|
[16] |
ZHOU J, HU B, FENG W, et al. An ensemble deep learning model for risk stratification of invasive lung adenocarcinoma using thin-slice CT[J]. NPJ Digit Med, 2023, 6( 1): 119. DOI: 10.1038/s41746-023-00866-z.
|
[17] |
WALSH JA, ROZYCKI M, YI E, et al. Application of machine learning in the diagnosis of axial spondyloarthritis[J]. Curr Opin Rheumatol, 2019, 31( 4): 362- 367. DOI: 10.1097/BOR.0000000000000612.
|
[18] |
VAMATHEVAN J, CLARK D, CZODROWSKI P, et al. Applications of machine learning in drug discovery and development[J]. Nat Rev Drug Discov, 2019, 18( 6): 463- 477. DOI: 10.1038/s41573-019-0024-5.
|
[19] |
TIAN D, YAN HJ, HUANG H, et al. Machine learning-based prognostic model for patients after lung transplantation[J]. JAMA Netw Open, 2023, 6( 5): e2312022. DOI: 10.1001/jamanetworkopen.2023.12022.
|
[20] |
AHN JC, CONNELL A, SIMONETTO DA, et al. Application of artificial intelligence for the diagnosis and treatment of liver diseases[J]. Hepatology, 2021, 73( 6): 2546- 2563. DOI: 10.1002/hep.31603.
|
[21] |
KINOSHITA F, TAKENAKA T, YAMASHITA T, et al. Development of artificial intelligence prognostic model for surgically resected non-small cell lung cancer[J]. Sci Rep, 2023, 13( 1): 15683. DOI: 10.1038/s41598-023-42964-8.
|
[22] |
SIDEY-GIBBONS JAM, SIDEY-GIBBONS CJ. Machine learning in medicine: A practical introduction[J]. BMC Med Res Methodol, 2019, 19( 1): 64. DOI: 10.1186/s12874-019-0681-4.
|
[23] |
ZHENG MH, SHI KQ, LIN XF, et al. A model to predict 3-month mortality risk of acute-on-chronic hepatitis B liver failure using artificial neural network[J]. J Viral Hepat, 2013, 20( 4): 248- 255. DOI: 10.1111/j.1365-2893.2012.01647.x.
|
[24] |
HOU YX, ZHANG QQ, GAO FY, et al. Artificial neural network-based models used for predicting 28- and 90-day mortality of patients with hepatitis B-associated acute-on-chronic liver failure[J]. BMC Gastroenterol, 2020, 20( 1): 75. DOI: 10.1186/s12876-020-01191-5.
|
[25] |
SHI KQ, ZHOU YY, YAN HD, et al. Classification and regression tree analysis of acute-on-chronic hepatitis B liver failure: Seeing the forest for the trees[J]. J Viral Hepat, 2017, 24( 2): 132- 140. DOI: 10.1111/jvh.12617.
|
[26] |
VERMA N, CHOUDHURY A, SINGH V, et al. APASL-ACLF Research Consortium-Artificial Intelligence(AARC-AI) model precisely predicts outcomes in acute-on-chronic liver failure patients[J]. Liver Int, 2023, 43( 2): 442- 451. DOI: 10.1111/liv.15361.
|
[27] |
LUO W, PHUNG D, TRAN T, et al. Guidelines for developing and reporting machine learning predictive models in biomedical research: A multidisciplinary view[J]. J Med Internet Res, 2016, 18( 12): e323. DOI: 10.2196/jmir.5870.
|
[28] |
YU KH, BEAM AL, KOHANE IS. Artificial intelligence in healthcare[J]. Nat Biomed Eng, 2018, 2( 10): 719- 731. DOI: 10.1038/s41551-018-0305-z.
|
[29] |
CAO ZJ, LI FD, XIANG XG, et al. Circulating cell death biomarker: Good candidates of prognostic indicator for patients with hepatitis B virus related acute-on-chronic liver failure[J]. Sci Rep, 2015, 5: 14240. DOI: 10.1038/srep14240.
|
[30] |
ARIZA X, GRAUPERA I, COLL M, et al. Neutrophil gelatinase-associated lipocalin is a biomarker of acute-on-chronic liver failure and prognosis in cirrhosis[J]. J Hepatol, 2016, 65( 1): 57- 65. DOI: 10.1016/j.jhep.2016.03.002.
|
[31] |
JUANOLA A, GRAUPERA I, ELIA C, et al. Urinary L-FABP is a promising prognostic biomarker of ACLF and mortality in patients with decompensated cirrhosis[J]. J Hepatol, 2022, 76( 1): 107- 114. DOI: 10.1016/j.jhep.2021.08.031.
|
[32] |
PENG H, ZHANG Q, LUO L, et al. A prognostic model of acute-on-chronic liver failure based on sarcopenia[J]. Hepatol Int, 2022, 16( 4): 964- 972. DOI: 10.1007/s12072-022-10363-2.
|
[33] |
HE TC, FONG JN, MOORE LW, et al. An imageomics and multi-network based deep learning model for risk assessment of liver transplantation for hepatocellular cancer[J]. Comput Med Imaging Graph, 2021, 89: 101894. DOI: 10.1016/j.compmedimag.2021.101894.
|