中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 40 Issue 9
Sep.  2024
Turn off MathJax
Article Contents

Current status of research on artificial intelligence in prognostic prediction models for acute-on-chronic liver failure

DOI: 10.12449/JCH240927
Research funding:

Sichuan Provincial Science and Technology Research Program (2023YFS0134)

More Information
  • Corresponding author: LAN Yunping, ashley.lan@uestc.edu.cn (ORCID: 0000-0002-9378-9498)
  • Received Date: 2023-12-19
  • Accepted Date: 2024-01-18
  • Published Date: 2024-09-25
  • Acute-on-chronic liver failure (ACLF) is a complex clinical syndrome of acute liver function deterioration on the basis of chronic liver diseases, characterized by hepatic and/or extra-hepatic organ failure and a high short-term mortality rate. At present, there is still a lack of effective treatment methods, and the mortality rate of ACLF reaches 50% ‍—‍ 90% after comprehensive medical treatment. A simple, rapid, and accurate prognostic prediction model for ACLF can help clinicians accurately judge the prognosis of ACLF patients in the early stage, identify the patients with poor prognosis, and provide early interventions, which can improve patient prognosis to some extent and help to reduce mortality rates. With the continuous development of computer science and increasingly powerful data processing capabilities, artificial intelligence is gaining more attention and has been applied in various aspects of liver diseases including diagnosis, treatment, and prognostic prediction. With reference to the current status of research in China and globally, this article reviews the common prognostic models for ACLF and machine learning-based prognostic prediction models and summarizes the latest research advances, in order to provide new perspectives for the future development of prognostic prediction models for ACLF.

     

  • loading
  • [1]
    MOREAU R, JALAN R, GINES P, et al. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis[J]. Gastroenterology, 2013, 144( 7): 1426- 1437. e 9. DOI: 10.1053/j.gastro.2013.02.042.
    [2]
    MIAO N, WANG FZ, ZHENG H, et al. Estimation of incidence of viral hepatitis B and analysis on case characteristics in China, 2013-2020[J]. Chin J Epidemiol, 2021, 42( 9): 1527- 1531. DOI: 10.3760/cma.j.cn112338-20210319-00227.

    缪宁, 王富珍, 郑徽, 等. 中国2013—2020年乙型肝炎发病情况估算和病例特征分析[J]. 中华流行病学杂志, 2021, 42( 9): 1527- 1531. DOI: 10.3760/cma.j.cn112338-20210319-00227.
    [3]
    ARROYO V, MOREAU R, JALAN R. Acute-on-chronic liver failure[J]. N Engl J Med, 2020, 382( 22): 2137- 2145. DOI: 10.1056/nejmra1914900.
    [4]
    JALAN R, GUSTOT T, FERNANDEZ J, et al.‘Equity’ and‘Justice’ for patients with acute-on chronic liver failure: A call to action[J]. J Hepatol, 2021, 75( 5): 1228- 1235. DOI: 10.1016/j.jhep.2021.06.017.
    [5]
    LING SB, JIANG GJ, QUE QY, et al. Liver transplantation in patients with liver failure: Twenty years of experience from China[J]. Liver Int, 2022, 42( 9): 2110- 2116. DOI: 10.1111/liv.15288.
    [6]
    LI P, LIANG X, LUO JJ, et al. Predicting the survival benefit of liver transplantation in HBV-related acute-on-chronic liver failure: An observational cohort study[J]. Lancet Reg Health West Pac, 2022, 32: 100638. DOI: 10.1016/j.lanwpc.2022.100638.
    [7]
    YANG LS, SHAN LL, SAXENA A, et al. Liver transplantation: A systematic review of long-term quality of life[J]. Liver Int, 2014, 34( 9): 1298- 1313. DOI: 10.1111/liv.12553.
    [8]
    HERNAEZ R, LIU Y, KRAMER JR, et al. Model for end-stage liver disease-sodium underestimates 90-day mortality risk in patients with acute-on-chronic liver failure[J]. J Hepatol, 2020, 73( 6): 1425- 1433. DOI: 10.1016/j.jhep.2020.06.005.
    [9]
    PUGH RN, MURRAY-LYON IM, DAWSON JL, et al. Transection of the oesophagus for bleeding oesophageal varices[J]. Br J Surg, 1973, 60( 8): 646- 649. DOI: 10.1002/bjs.1800600817.
    [10]
    MALINCHOC M, KAMATH PS, GORDON FD, et al. A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts[J]. Hepatology, 2000, 31( 4): 864- 871. DOI: 10.1053/he.2000.5852.
    [11]
    KNAUS WA, ZIMMERMAN JE, WAGNER DP, et al. APACHE-acute physiology and chronic health evaluation: A physiologically based classification system[J]. Crit Care Med, 1981, 9( 8): 591- 597. DOI: 10.1097/00003246-198108000-00008.
    [12]
    HERNAEZ R, SOLÀ E, MOREAU R, et al. Acute-on-chronic liver failure: An update[J]. Gut, 2017, 66( 3): 541- 553. DOI: 10.1136/gutjnl-2016-312670.
    [13]
    CHOUDHURY A, JINDAL A, MAIWALL R, et al. Liver failure determines the outcome in patients of acute-on-chronic liver failure(ACLF): Comparison of APASL ACLF research consortium(AARC) and CLIF-SOFA models[J]. Hepatol Int, 2017, 11( 5): 461- 471. DOI: 10.1007/s12072-017-9816-z.
    [14]
    WU T, LI J, SHAO L, et al. Development of diagnostic criteria and a prognostic score for hepatitis B virus-related acute-on-chronic liver failure[J]. Gut, 2018, 67( 12): 2181- 2191. DOI: 10.1136/gutjnl-2017-314641.
    [15]
    DEO RC. Machine learning in medicine[J]. Circulation, 2015, 132( 20): 1920- 1930. DOI: 10.1161/CIRCULATIONAHA.115.001593.
    [16]
    ZHOU J, HU B, FENG W, et al. An ensemble deep learning model for risk stratification of invasive lung adenocarcinoma using thin-slice CT[J]. NPJ Digit Med, 2023, 6( 1): 119. DOI: 10.1038/s41746-023-00866-z.
    [17]
    WALSH JA, ROZYCKI M, YI E, et al. Application of machine learning in the diagnosis of axial spondyloarthritis[J]. Curr Opin Rheumatol, 2019, 31( 4): 362- 367. DOI: 10.1097/BOR.0000000000000612.
    [18]
    VAMATHEVAN J, CLARK D, CZODROWSKI P, et al. Applications of machine learning in drug discovery and development[J]. Nat Rev Drug Discov, 2019, 18( 6): 463- 477. DOI: 10.1038/s41573-019-0024-5.
    [19]
    TIAN D, YAN HJ, HUANG H, et al. Machine learning-based prognostic model for patients after lung transplantation[J]. JAMA Netw Open, 2023, 6( 5): e2312022. DOI: 10.1001/jamanetworkopen.2023.12022.
    [20]
    AHN JC, CONNELL A, SIMONETTO DA, et al. Application of artificial intelligence for the diagnosis and treatment of liver diseases[J]. Hepatology, 2021, 73( 6): 2546- 2563. DOI: 10.1002/hep.31603.
    [21]
    KINOSHITA F, TAKENAKA T, YAMASHITA T, et al. Development of artificial intelligence prognostic model for surgically resected non-small cell lung cancer[J]. Sci Rep, 2023, 13( 1): 15683. DOI: 10.1038/s41598-023-42964-8.
    [22]
    SIDEY-GIBBONS JAM, SIDEY-GIBBONS CJ. Machine learning in medicine: A practical introduction[J]. BMC Med Res Methodol, 2019, 19( 1): 64. DOI: 10.1186/s12874-019-0681-4.
    [23]
    ZHENG MH, SHI KQ, LIN XF, et al. A model to predict 3-month mortality risk of acute-on-chronic hepatitis B liver failure using artificial neural network[J]. J Viral Hepat, 2013, 20( 4): 248- 255. DOI: 10.1111/j.1365-2893.2012.01647.x.
    [24]
    HOU YX, ZHANG QQ, GAO FY, et al. Artificial neural network-based models used for predicting 28- and 90-day mortality of patients with hepatitis B-associated acute-on-chronic liver failure[J]. BMC Gastroenterol, 2020, 20( 1): 75. DOI: 10.1186/s12876-020-01191-5.
    [25]
    SHI KQ, ZHOU YY, YAN HD, et al. Classification and regression tree analysis of acute-on-chronic hepatitis B liver failure: Seeing the forest for the trees[J]. J Viral Hepat, 2017, 24( 2): 132- 140. DOI: 10.1111/jvh.12617.
    [26]
    VERMA N, CHOUDHURY A, SINGH V, et al. APASL-ACLF Research Consortium-Artificial Intelligence(AARC-AI) model precisely predicts outcomes in acute-on-chronic liver failure patients[J]. Liver Int, 2023, 43( 2): 442- 451. DOI: 10.1111/liv.15361.
    [27]
    LUO W, PHUNG D, TRAN T, et al. Guidelines for developing and reporting machine learning predictive models in biomedical research: A multidisciplinary view[J]. J Med Internet Res, 2016, 18( 12): e323. DOI: 10.2196/jmir.5870.
    [28]
    YU KH, BEAM AL, KOHANE IS. Artificial intelligence in healthcare[J]. Nat Biomed Eng, 2018, 2( 10): 719- 731. DOI: 10.1038/s41551-018-0305-z.
    [29]
    CAO ZJ, LI FD, XIANG XG, et al. Circulating cell death biomarker: Good candidates of prognostic indicator for patients with hepatitis B virus related acute-on-chronic liver failure[J]. Sci Rep, 2015, 5: 14240. DOI: 10.1038/srep14240.
    [30]
    ARIZA X, GRAUPERA I, COLL M, et al. Neutrophil gelatinase-associated lipocalin is a biomarker of acute-on-chronic liver failure and prognosis in cirrhosis[J]. J Hepatol, 2016, 65( 1): 57- 65. DOI: 10.1016/j.jhep.2016.03.002.
    [31]
    JUANOLA A, GRAUPERA I, ELIA C, et al. Urinary L-FABP is a promising prognostic biomarker of ACLF and mortality in patients with decompensated cirrhosis[J]. J Hepatol, 2022, 76( 1): 107- 114. DOI: 10.1016/j.jhep.2021.08.031.
    [32]
    PENG H, ZHANG Q, LUO L, et al. A prognostic model of acute-on-chronic liver failure based on sarcopenia[J]. Hepatol Int, 2022, 16( 4): 964- 972. DOI: 10.1007/s12072-022-10363-2.
    [33]
    HE TC, FONG JN, MOORE LW, et al. An imageomics and multi-network based deep learning model for risk assessment of liver transplantation for hepatocellular cancer[J]. Comput Med Imaging Graph, 2021, 89: 101894. DOI: 10.1016/j.compmedimag.2021.101894.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(2)

    Article Metrics

    Article views (230) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return