[1] |
FISCHER HP, GOLTZ D. Autoimmune liver diseases[J]. Pathologe, 2020, 41( 5): 444- 456. DOI: 10.1007/s00292-020-00807-7.
|
[2] |
SHIFFMAN ML. Autoimmune hepatitis: Epidemiology, subtypes, and presentation[J]. Clin Liver Dis, 2024, 28( 1): 1- 14. DOI: 10.1016/j.cld.2023.06.002.
|
[3] |
MURATORI L, LOHSE AW, LENZI M. Diagnosis and management of autoimmune hepatitis[J]. BMJ, 2023, 380: e070201. DOI: 10.1136/bmj-2022-070201.
|
[4] |
KOMORI A. Recent updates on the management of autoimmune hepatitis[J]. Clin Mol Hepatol, 2021, 27( 1): 58- 69. DOI: 10.3350/cmh.2020.0189.
|
[5] |
PAPE S, SNIJDERS RJALM, GEVERS TJG, et al. Systematic review of response criteria and endpoints in autoimmune hepatitis by the International Autoimmune Hepatitis Group[J]. J Hepatol, 2022, 76( 4): 841- 849. DOI: 10.1016/j.jhep.2021.12.041.
|
[6] |
LU Y, SUN FF, ZENG Z, et al. Research advances on autoimmune hepatitis[J/CD]. Chin J Liver Dis(Electronic Version), 2022, 14( 4): 1- 9. DOI: 10.3969/j.issn.1674-7380.2022.04.001.
路遥, 孙芳芳, 曾湛, 等. 自身免疫性肝炎研究进展[J/CD]. 中国肝脏病杂志(电子版), 2022, 14( 4): 1- 9. DOI: 10.3969/j.issn.1674-7380.2022.04.001.
|
[7] |
LI Z, GUO JL, BI LQ. Role of the NLRP3 inflammasome in autoimmune diseases[J]. Biomed Pharmacother, 2020, 130: 110542. DOI: 10.1016/j.biopha.2020.110542.
|
[8] |
RUMPRET M, von RICHTHOFEN HJ, PEPERZAK V, et al. Inhibitory pattern recognition receptors[J]. J Exp Med, 2022, 219( 1): e20211463. DOI: 10.1084/jem.20211463.
|
[9] |
LEU SY, TSANG YL, HO LC, et al. NLRP3 inflammasome activation, metabolic danger signals, and protein binding partners[J]. J Endocrinol, 2023, 257( 2): e220184. DOI: 10.1530/JOE-22-0184.
|
[10] |
SCHMIDT FI, LU A, CHEN JW, et al. A single domain antibody fragment that recognizes the adaptor ASC defines the role of ASC domains in inflammasome assembly[J]. J Exp Med, 2016, 213( 5): 771- 790. DOI: 10.1084/jem.20151790.
|
[11] |
NAMBAYAN RJT, SANDIN SI, QUINT DA, et al. The inflammasome adapter ASC assembles into filaments with integral participation of its two Death Domains, PYD and CARD[J]. J Biol Chem, 2019, 294( 2): 439- 452. DOI: 10.1074/jbc.RA118.004407.
|
[12] |
MOLLA MD, AYELIGN B, DESSIE G, et al. Caspase-1 as a regulatory molecule of lipid metabolism[J]. Lipids Health Dis, 2020, 19( 1): 34. DOI: 10.1186/s12944-020-01220-y.
|
[13] |
FU JN, WU H. Structural mechanisms of NLRP3 inflammasome assembly and activation[J]. Annu Rev Immunol, 2023, 41: 301- 316. DOI: 10.1146/annurev-immunol-081022-021207.
|
[14] |
BLEVINS HM, XU YM, BIBY S, et al. The NLRP3 inflammasome pathway: A review of mechanisms and inhibitors for the treatment of inflammatory diseases[J]. Front Aging Neurosci, 2022, 14: 879021. DOI: 10.3389/fnagi.2022.879021.
|
[15] |
BOUCHER D, MONTELEONE M, COLL RC, et al. Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity[J]. J Exp Med, 2018, 215( 3): 827- 840. DOI: 10.1084/jem.20172222.
|
[16] |
DUBYAK GR, MILLER BA, PEARLMAN E. Pyroptosis in neutrophils: Multimodal integration of inflammasome and regulated cell death signaling pathways[J]. Immunol Rev, 2023, 314( 1): 229- 249. DOI: 10.1111/imr.13186.
|
[17] |
SWANSON KV, DENG M, TING JPY. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics[J]. Nat Rev Immunol, 2019, 19( 8): 477- 489. DOI: 10.1038/s41577-019-0165-0.
|
[18] |
PELEGRIN P. P2X7 receptor and the NLRP3 inflammasome: Partners in crime[J]. Biochem Pharmacol, 2021, 187: 114385. DOI: 10.1016/j.bcp.2020.114385.
|
[19] |
SHARIF H, WANG L, WANG WL, et al. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome[J]. Nature, 2019, 570( 7761): 338- 343. DOI: 10.1038/s41586-019-1295-z.
|
[20] |
BERINGER A, MIOSSEC P. IL-17 and IL-17-producing cells and liver diseases, with focus on autoimmune liver diseases[J]. Autoimmun Rev, 2018, 17( 12): 1176- 1185. DOI: 10.1016/j.autrev.2018.06.008.
|
[21] |
BUTCHER MJ, ZHU JF. Recent advances in understanding the Th1/Th2 effector choice[J]. Fac Rev, 2021, 10: 30. DOI: 10.12703/r/10-30.
|
[22] |
WU YN, ZHANG R, SONG XC, et al. C6orf120 gene knockout in rats mitigates concanavalin A-induced autoimmune hepatitis via regulating NKT cells[J]. Cell Immunol, 2022, 371: 104467. DOI: 10.1016/j.cellimm.2021.104467.
|
[23] |
LAN PX, FAN YH, ZHAO Y, et al. TNF superfamily receptor OX40 triggers invariant NKT cell pyroptosis and liver injury[J]. J Clin Invest, 2017, 127( 6): 2222- 2234. DOI: 10.1172/JCI91075.
|
[24] |
SMYK DS, MAVROPOULOS A, MIELI-VERGANI G, et al. The role of invariant NKT in autoimmune liver disease: Can vitamin D act as an immunomodulator?[J]. Can J Gastroenterol Hepatol, 2018, 2018: 8197937. DOI: 10.1155/2018/8197937.
|
[25] |
SIRBE C, SIMU GL, SZABO I, et al. Pathogenesis of autoimmune hepatitis-cellular and molecular mechanisms[J]. Int J Mol Sci, 2021, 22( 24): 13578. DOI: 10.3390/ijms222413578.
|
[26] |
CHRISTEN U, HINTERMANN E. Animal models for autoimmune hepatitis: Are current models good enough?[J]. Front Immunol, 2022, 13: 898615. DOI: 10.3389/fimmu.2022.898615.
|
[27] |
LUAN JY, ZHANG XY, WANG SF, et al. NOD-like receptor protein 3 inflammasome-dependent IL-1β accelerated ConA-induced hepatitis[J]. Front Immunol, 2018, 9: 758. DOI: 10.3389/fimmu.2018.00758.
|
[28] |
LIU ZJ, SUN MY, LIU WH, et al. Deficiency of purinergic P2X4 receptor alleviates experimental autoimmune hepatitis in mice[J]. Biochem Pharmacol, 2024, 221: 116033. DOI: 10.1016/j.bcp.2024.116033.
|
[29] |
WANG H, WANG GD, LIANG YJ, et al. Redox regulation of hepatic NLRP3 inflammasome activation and immune dysregulation in trichloroethene-mediated autoimmunity[J]. Free Radic Biol Med, 2019, 143: 223- 231. DOI: 10.1016/j.freeradbiomed.2019.08.014.
|
[30] |
WANG H, WANG GD, ANSARI GAS, et al. Trichloroethene metabolite dichloroacetyl chloride induces apoptosis and compromises phagocytosis in Kupffer cells: Activation of inflammasome and MAPKs[J]. PLoS One, 2018, 13( 12): e0210200. DOI: 10.1371/journal.pone.0210200.
|
[31] |
WANG KC, WU WR, JIANG XW, et al. Multi-omics analysis reveals the protection of gasdermin D in concanavalin A-induced autoimmune hepatitis[J]. Microbiol Spectr, 2022, 10( 5): e0171722. DOI: 10.1128/spectrum.01717-22.
|
[32] |
GUAN YL, GU YY, LI H, et al. NLRP3 inflammasome activation mechanism and its role in autoimmune liver disease[J]. Acta Biochim Biophys Sin, 2022, 54( 11): 1577- 1586. DOI: 10.3724/abbs.2022137.
|
[33] |
HUANG Y, XU W, ZHOU RB. NLRP3 inflammasome activation and cell death[J]. Cell Mol Immunol, 2021, 18( 9): 2114- 2127. DOI: 10.1038/s41423-021-00740-6.
|
[34] |
XIE HB, PENG JL, ZHANG XS, et al. Effects of mitochondrial reactive oxygen species-induced NLRP3 inflammasome activation on trichloroethylene-mediated kidney immune injury[J]. Ecotoxicol Environ Saf, 2022, 244: 114067. DOI: 10.1016/j.ecoenv.2022.114067.
|
[35] |
LU FB, CHEN DZ, CHEN L, et al. Attenuation of experimental autoimmune hepatitis in mice with bone mesenchymal stem cell-derived exosomes carrying microRNA-223-3p[J]. Mol Cells, 2019, 42( 12): 906- 918. DOI: 10.14348/molcells.2019.2283.
|
[36] |
HUANG C, XING X, XIANG XY, et al. MicroRNAs in autoimmune liver diseases: From diagnosis to potential therapeutic targets[J]. Biomed Pharmacother, 2020, 130: 110558. DOI: 10.1016/j.biopha.2020.110558.
|
[37] |
YU YN, DONG H, ZHANG Y, et al. MicroRNA-223 downregulation promotes HBx-induced podocyte pyroptosis by targeting the NLRP3 inflammasome[J]. Arch Virol, 2022, 167( 9): 1841- 1854. DOI: 10.1007/s00705-022-05499-3.
|
[38] |
LA ROSA F, MANCUSO R, AGOSTINI S, et al. Pharmacological and epigenetic regulators of NLRP3 inflammasome activation in Alzheimer’s disease[J]. Pharmaceuticals, 2021, 14( 11): 1187. DOI: 10.3390/ph14111187.
|
[39] |
LIU D, CHENG HL, LUO JF. Exogenous hydrogen sulfide miR-211-5p targeting TLR4 pathway mitigates liver damage in autoimmune hepatitis mice[J]. Immunol J, 2022, 38( 10): 838- 845. DOI: 10.13431/j.cnki.immunol.j.20220117.
刘丹, 程海林, 罗剑锋. MiR-211-5p靶向TLR4通路减轻自身免疫性肝炎小鼠肝损害[J]. 免疫学杂志, 2022, 38( 10): 838- 845. DOI: 10.13431/j.cnki.immunol.j.20220117.
|
[40] |
CHEN L, LU FB, CHEN DZ, et al. BMSCs-derived miR-223-containing exosomes contribute to liver protection in experimental autoimmune hepatitis[J]. Mol Immunol, 2018, 93: 38- 46. DOI: 10.1016/j.molimm.2017.11.008.
|
[41] |
de CARVALHO RIBEIRO M, SZABO G. Role of the inflammasome in liver disease[J]. Annu Rev Pathol, 2022, 17: 345- 365. DOI: 10.1146/annurev-pathmechdis-032521-102529.
|
[42] |
COLL RC, SCHRODER K, PELEGRÍN P. NLRP3 and pyroptosis blockers for treating inflammatory diseases[J]. Trends Pharmacol Sci, 2022, 43( 8): 653- 668. DOI: 10.1016/j.tips.2022.04.003.
|
[43] |
SHI FL, NI ST, LUO SQ, et al. Dimethyl fumarate ameliorates autoimmune hepatitis in mice by blocking NLRP3 inflammasome activation[J]. Int Immunopharmacol, 2022, 108: 108867. DOI: 10.1016/j.intimp.2022.108867.
|
[44] |
SANGINETO M, GRABHERR F, ADOLPH TE, et al. Dimethyl fumarate ameliorates hepatic inflammation in alcohol related liver disease[J]. Liver Int, 2020, 40( 7): 1610- 1619. DOI: 10.1111/liv.14483.
|
[45] |
RAMOS-TOVAR E, MURIEL P. NLRP3 inflammasome in hepatic diseases: A pharmacological target[J]. Biochem Pharmacol, 2023, 217: 115861. DOI: 10.1016/j.bcp.2023.115861.
|
[46] |
LIU GW, ZHAO WX, BAI JM, et al. Formononetin protects against concanavalin-A-induced autoimmune hepatitis in mice through its anti-apoptotic and anti-inflammatory properties[J]. Biochem Cell Biol, 2021, 99( 2): 231- 240. DOI: 10.1139/bcb-2020-0197.
|
[47] |
SILVESTRE GFG, DE LUCENA RP, SILVA ALVES H DA. Cucurbitacins and the immune system: Update in research on anti- inflammatory, antioxidant, and immunomodulatory mechanisms[J]. Curr Med Chem, 2022, 29( 21): 3774- 3789. DOI: 10.2174/0929867329666220107153253.
|
[48] |
MOHAMED GA, IBRAHIM SRM, EL-AGAMY DS, et al. Cucurbitacin E glucoside alleviates concanavalin A-induced hepatitis through enhancing SIRT1/Nrf2/HO-1 and inhibiting NF-κB/NLRP3 signaling pathways[J]. J Ethnopharmacol, 2022, 292: 115223. DOI: 10.1016/j.jep.2022.115223.
|
[49] |
LIU QQ, YANG H, KANG X, et al. A synbiotic ameliorates con A-induced autoimmune hepatitis in mice through modulation of gut microbiota and immune imbalance[J]. Mol Nutr Food Res, 2023, 67( 7): e2200428. DOI: 10.1002/mnfr.202200428.
|
[50] |
KANG YB, KUANG XY, YAN H, et al. A novel synbiotic alleviates autoimmune hepatitis by modulating the gut microbiota-liver axis and inhibiting the hepatic TLR4/NF-κB/NLRP3 signaling pathway[J]. mSystems, 2023, 8( 2): e0112722. DOI: 10.1128/msystems.01127-22.
|
[1] | Yongping LIU, Yaojie SHEN. Clinical diagnosis of drug-induced autoimmune-like hepatitis[J]. Journal of Clinical Hepatology, 2025, 41(3): 542-546. doi: 10.12449/JCH250322 |
[2] | Peipei GUO, Yang XU, Jiaqi SHI, Yang WU, Lixia LU, Bin LI, Xiaohui YU. Role of amino acid metabolism in autoimmune hepatitis and related therapeutic targets[J]. Journal of Clinical Hepatology, 2025, 41(3): 547-551. doi: 10.12449/JCH250323 |
[3] | Zhurong LI, Chen CHEN, Di GUO, Sixue LYU, Jiawen WU, Na YANG, Yang LIU. Role and mechanism of action of Yinchenhao Decoction in inhibiting ferroptosis of hepatocytes in mice with autoimmune hepatitis[J]. Journal of Clinical Hepatology, 2024, 40(3): 502-508. doi: 10.12449/JCH240311 |
[4] | Xiaodong TENG. Value of biopsy in evaluating the pathological progression of autoimmune hepatitis/pancreatitis[J]. Journal of Clinical Hepatology, 2024, 40(6): 1073-1075. doi: 10.12449/JCH240601 |
[5] | Wenjun YANG. Pathological diagnosis of autoimmune hepatitis[J]. Journal of Clinical Hepatology, 2024, 40(6): 1082-1087. doi: 10.12449/JCH240603 |
[6] | Longlong LUO, Lifei WANG, Guojing XING, Ying ZHENG, Lixia LU, Chuyi LI, Bin LI, Jun MA, Xiaohui YU, Jiucong ZHANG. Mechanism of action of follicular helper T cells in autoimmune hepatitis[J]. Journal of Clinical Hepatology, 2024, 40(7): 1466-1469. doi: 10.12449/JCH240727 |
[7] | Mingming ZHANG, Huan LIU, Dongmei ZHANG, Dongbo WU, Hong TANG. Primary biliary cholangitis-autoimmune hepatitis overlap syndrome comorbid with pulmonary cryptococcosis: A case report[J]. Journal of Clinical Hepatology, 2024, 40(8): 1666-1669. doi: 10.12449/JCH240825 |
[8] | Yi CUI, Fengjie QIAO, Jiahao QIU, Yufei LIU, Zhujun GAO, Zhi SHANG, Yueqiu GAO. Effect of ganoderic acid A on a mouse model of concanavalin A-induced acute immune liver injury and its mechanism[J]. Journal of Clinical Hepatology, 2024, 40(12): 2415-2423. doi: 10.12449/JCH241211 |
[9] | Qinrong LI, Ying YAO, Zhiyuan XU. Research advances in drug-induced autoimmune-like hepatitis[J]. Journal of Clinical Hepatology, 2024, 40(6): 1255-1258. doi: 10.12449/JCH240628 |
[10] | Xiaohan MA, Lixia YANG. Research advances in noninvasive diagnosis of liver fibrosis in autoimmune liver diseases[J]. Journal of Clinical Hepatology, 2023, 39(11): 2689-2696. doi: 10.3969/j.issn.1001-5256.2023.11.026 |
[11] | Shixiu PENG, Chunyan LI, Aiping HUANG, Songtao ZHU, Jing MAI, Liping WU. Human immunodeficiency virus infection comorbid with autoimmune hepatitis-primary biliary cholangitis overlap syndrome: A case report[J]. Journal of Clinical Hepatology, 2023, 39(9): 2175-2178. doi: 10.3969/j.issn.1001-5256.2023.09.021 |
[12] | Longlong LUO, Lifei WANG, Ying ZHENG, Bin LI, Lixia LU, Chuyi LI, Xiaohui YU, Jiucong ZHANG. Research advances in mesenchymal stem cells and their exosomes in treatment of autoimmune hepatitis[J]. Journal of Clinical Hepatology, 2023, 39(12): 2920-2925. doi: 10.3969/j.issn.1001-5256.2023.12.025 |
[13] | Lin HAN, Mingyue ZHANG, Ying SUN. Role of T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain in the immune mechanism of autoimmune hepatitis and its prospects in treatment[J]. Journal of Clinical Hepatology, 2022, 38(3): 656-659. doi: 10.3969/j.issn.1001-5256.2022.03.034 |
[14] | Yan YANG, Feilin GE, Qian HUANG, Xinyue ZHANG, Rui ZENG, Xiaohe XIAO, Zhaofang BAI, Qin SUN. Mechanism of action of nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome in liver diseases[J]. Journal of Clinical Hepatology, 2022, 38(4): 942-946. doi: 10.3969/j.issn.1001-5256.2022.04.041 |
[15] | Kai XU, Chuanling WU, Fengjiao YIN, Wendeng LI, Wang HU, Chuchu LIU, Haijiu WANG, Zhixin WANG. Clinical features, diagnosis, and treatment of autoimmune pancreatitis[J]. Journal of Clinical Hepatology, 2021, 37(6): 1477-1480. doi: 10.3969/j.issn.1001-5256.2021.06.054 |
[16] | Mingyue ZHANG, Lin HAN, Ying SUN, Zhengsheng ZOU. Research advances in clinical treatment of adult autoimmune hepatitis[J]. Journal of Clinical Hepatology, 2021, 37(6): 1459-1465. doi: 10.3969/j.issn.1001-5256.2021.06.050 |
[17] | Wang Rui, Wang QiXia, Ma Xiong. Standard therapy and potential therapeutic targets for autoimmune hepatitis[J]. Journal of Clinical Hepatology, 2020, 36(4): 737-742. doi: 10.3969/j.issn.1001-5256.2020.04.005 |
[18] | Wang Jing, Zhao LiLi, Shi RuiFang, Liu YongGang, Li Jia. Early treatment of PBC-AIH overlap syndrome with histological remission: A case report[J]. Journal of Clinical Hepatology, 2019, 35(9): 2059-2061. doi: 10.3969/j.issn.1001-5256.2019.09.037 |
[19] | Jin Chao, Pan JieLu, Yu Xiao, Zhang HaiYan, Xing LianJun. Advances in the clinical treatment of autoimmune hepatitis[J]. Journal of Clinical Hepatology, 2019, 35(10): 2331-2334. doi: 10.3969/j.issn.1001-5256.2019.10.044 |
[20] | Ma Juan, Liu YuLan. Corticosteroid therapy for autoimmune pancreatitis[J]. Journal of Clinical Hepatology, 2018, 34(8): 1599-1603. doi: 10.3969/j.issn.1001-5256.2018.08.002 |