[1] |
FARRAG AN, KAMEL AM, EL-BARAKY IA. Opportunities and challenges for the application of artificial intelligence paradigms into the management of endemic viral infections: The example of chronic hepatitis C virus[J]. Rev Med Virol, 2024, 34( 2): e2514. DOI: 10.1002/rmv.2514.
|
[2] |
BRUNNER N, BRUGGMANN P. Trends of the global hepatitis C disease burden: Strategies to achieve elimination[J]. J Prev Med Public Health, 2021, 54( 4): 251- 258. DOI: 10.3961/jpmph.21.151.
|
[3] |
LE BERRE C, SANDBORN WJ, ARIDHI S, et al. Application of artificial intelligence to gastroenterology and hepatology[J]. Gastroenterology, 2020, 158( 1): 76- 94. DOI: 10.1053/j.gastro.2019.08.058.
|
[4] |
NADIF M, ROLE F. Unsupervised and self-supervised deep learning approaches for biomedical text mining[J]. Brief Bioinform, 2021, 22( 2): 1592- 1603. DOI: 10.1093/bib/bbab016.
|
[5] |
HASSABIS D, KUMARAN D, SUMMERFIELD C, et al. Neuroscience-inspired artificial intelligence[J]. Neuron, 2017, 95( 2): 245- 258. DOI: 10.1016/j.neuron.2017.06.011.
|
[6] |
DOYLE OM, LEAVITT N, RIGG JA. Finding undiagnosed patients with hepatitis C infection: An application of artificial intelligence to patient claims data[J]. Sci Rep, 2020, 10( 1): 10521. DOI: 10.1038/s41598-020-67013-6.
|
[7] |
ELSHEWEY AM, SHAMS MY, TAWFEEK SM, et al. Optimizing HCV disease prediction in Egypt: The hyOPTGB framework[J]. Diagnostics, 2023, 13( 22): 3439. DOI: 10.3390/diagnostics13223439.
|
[8] |
REISER M, WIEBNER B, HIRSCH J, et al. Neural-network analysis of socio-medical data to identify predictors of undiagnosed hepatitis C virus infections in Germany(DETECT)[J]. J Transl Med, 2019, 17( 1): 94. DOI: 10.1186/s12967-019-1832-4.
|
[9] |
BUTARU AE, MĂMULEANU M, STREBA CT, et al. Resource management through artificial intelligence in screening programs-key for the successful elimination of hepatitis C[J]. Diagnostics, 2022, 12( 2): 346. DOI: 10.3390/diagnostics12020346.
|
[10] |
LI TH S, CHIU HJ, KUO PH. Hepatitis C virus detection model by using random forest, logistic-regression and ABC algorithm[J]. IEEE Access, 2022, 10: 91045- 91058. DOI: 10.1109/ACCESS.2022.3202295.
|
[11] |
ALIZARGAR A, CHANG YL, TAN TH. Performance comparison of machine learning approaches on hepatitis C prediction employing data mining techniques[J]. Bioengineering(Basel), 2023, 10( 4): 481. DOI: 10.3390/bioengineering10040481.
|
[12] |
FLAMM S, LAWITZ E, BORG B, et al. Efficacy and safety of sofosbuvir/velpatasvir plus ribavirin in patients with hepatitis C virus-related decompensated cirrhosis[J]. Viruses, 2023, 15( 10): 2026. DOI: 10.3390/v15102026.
|
[13] |
CHIRIKOV VV, MARX SE, MANTHENA SR, et al. Development of a comprehensive dataset of hepatitis C patients and examination of disease epidemiology in the United States, 2013-2016[J]. Adv Ther, 2018, 35( 7): 1087- 1102. DOI: 10.1007/s12325-018-0721-1.
|
[14] |
CHURKIN A, KRISS S, UZIEL A, et al. Machine learning for mathematical models of HCV kinetics during antiviral therapy[J]. Math Biosci, 2022, 343: 108756. DOI: 10.1016/j.mbs.2021.108756.
|
[15] |
PARK H, LO-CIGANIC WH, HUANG J, et al. Machine learning algorithms for predicting direct-acting antiviral treatment failure in chronic hepatitis C: An HCV-TARGET analysis[J]. Hepatology, 2022, 76( 2): 483- 491. DOI: 10.1002/hep.32347.
|
[16] |
HAGA H, SATO H, KOSEKI A, et al. A machine learning-based treatment prediction model using whole genome variants of hepatitis C virus[J]. PLoS One, 2020, 15( 11): e0242028. DOI: 10.1371/journal.pone.0242028.
|
[17] |
JANCZEWSKA E, KOŁEK MF, LORENC B, et al. Factors influencing the failure of interferon-free therapy for chronic hepatitis C: Data from the Polish EpiTer-2 cohort study[J]. World J Gastroenterol, 2021, 27( 18): 2177- 2192. DOI: 10.3748/wjg.v27.i18.2177.
|
[18] |
SHOUSHA HI, AWAD AH, OMRAN DA, et al. Data mining and machine learning algorithms using IL28B genotype and biochemical markers best predicted advanced liver fibrosis in chronic hepatitis C[J]. Jpn J Infect Dis, 2018, 71( 1): 51- 57. DOI: 10.7883/yoken.JJID.2017.089.
|
[19] |
HASHEM S, ESMAT G, ELAKEL W, et al. Comparison of machine learning approaches for prediction of advanced liver fibrosis in chronic hepatitis C patients[J]. IEEE/ACM Trans Comput Biol Bioinform, 2018, 15( 3): 861- 868. DOI: 10.1109/TCBB.2017.2690848.
|
[20] |
KONERMAN MA, ZHANG YW, ZHU J, et al. Improvement of predictive models of risk of disease progression in chronic hepatitis C by incorporating longitudinal data[J]. Hepatology, 2015, 61( 6): 1832- 1841. DOI: 10.1002/hep.27750.
|
[21] |
IOANNOU GN, TANG WJ, BESTE LA, et al. Assessment of a deep learning model to predict hepatocellular carcinoma in patients with hepatitis C cirrhosis[J]. JAMA Netw Open, 2020, 3( 9): e2015626. DOI: 10.1001/jamanetworkopen.2020.15626.
|