中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 41 Issue 1
Jan.  2025
Turn off MathJax
Article Contents

Application of machine learning in the diagnosis and treatment of chronic hepatitis C

DOI: 10.12449/JCH250121
Research funding:

Scientific Research Project of Beijing YouAn Hospital, CCMU, 2022 (BJYAYY-YN2022-08)

More Information
  • Corresponding author: WANG Yang, wangyangdoc@126.com (ORCID: 0000-0002-7631-1660)
  • Received Date: 2024-05-22
  • Accepted Date: 2024-07-05
  • Published Date: 2025-01-25
  • With the development of artificial intelligence, machine learning has shown great potential in the field of medical health. Machine learning conducts a comprehensive analysis of patient data including clinical features, blood tests, and imaging examinations and establishes corresponding mathematical models to achieve the diagnosis and treatment of diseases and the prediction of disease conditions, thereby guiding disease management. With reference to the latest research findings, this article reviews the application of machine learning in chronic hepatitis C and related research advances.

     

  • loading
  • [1]
    FARRAG AN, KAMEL AM, EL-BARAKY IA. Opportunities and challenges for the application of artificial intelligence paradigms into the management of endemic viral infections: The example of chronic hepatitis C virus[J]. Rev Med Virol, 2024, 34( 2): e2514. DOI: 10.1002/rmv.2514.
    [2]
    BRUNNER N, BRUGGMANN P. Trends of the global hepatitis C disease burden: Strategies to achieve elimination[J]. J Prev Med Public Health, 2021, 54( 4): 251- 258. DOI: 10.3961/jpmph.21.151.
    [3]
    LE BERRE C, SANDBORN WJ, ARIDHI S, et al. Application of artificial intelligence to gastroenterology and hepatology[J]. Gastroenterology, 2020, 158( 1): 76- 94. DOI: 10.1053/j.gastro.2019.08.058.
    [4]
    NADIF M, ROLE F. Unsupervised and self-supervised deep learning approaches for biomedical text mining[J]. Brief Bioinform, 2021, 22( 2): 1592- 1603. DOI: 10.1093/bib/bbab016.
    [5]
    HASSABIS D, KUMARAN D, SUMMERFIELD C, et al. Neuroscience-inspired artificial intelligence[J]. Neuron, 2017, 95( 2): 245- 258. DOI: 10.1016/j.neuron.2017.06.011.
    [6]
    DOYLE OM, LEAVITT N, RIGG JA. Finding undiagnosed patients with hepatitis C infection: An application of artificial intelligence to patient claims data[J]. Sci Rep, 2020, 10( 1): 10521. DOI: 10.1038/s41598-020-67013-6.
    [7]
    ELSHEWEY AM, SHAMS MY, TAWFEEK SM, et al. Optimizing HCV disease prediction in Egypt: The hyOPTGB framework[J]. Diagnostics, 2023, 13( 22): 3439. DOI: 10.3390/diagnostics13223439.
    [8]
    REISER M, WIEBNER B, HIRSCH J, et al. Neural-network analysis of socio-medical data to identify predictors of undiagnosed hepatitis C virus infections in Germany(DETECT)[J]. J Transl Med, 2019, 17( 1): 94. DOI: 10.1186/s12967-019-1832-4.
    [9]
    BUTARU AE, MĂMULEANU M, STREBA CT, et al. Resource management through artificial intelligence in screening programs-key for the successful elimination of hepatitis C[J]. Diagnostics, 2022, 12( 2): 346. DOI: 10.3390/diagnostics12020346.
    [10]
    LI TH S, CHIU HJ, KUO PH. Hepatitis C virus detection model by using random forest, logistic-regression and ABC algorithm[J]. IEEE Access, 2022, 10: 91045- 91058. DOI: 10.1109/ACCESS.2022.3202295.
    [11]
    ALIZARGAR A, CHANG YL, TAN TH. Performance comparison of machine learning approaches on hepatitis C prediction employing data mining techniques[J]. Bioengineering(Basel), 2023, 10( 4): 481. DOI: 10.3390/bioengineering10040481.
    [12]
    FLAMM S, LAWITZ E, BORG B, et al. Efficacy and safety of sofosbuvir/velpatasvir plus ribavirin in patients with hepatitis C virus-related decompensated cirrhosis[J]. Viruses, 2023, 15( 10): 2026. DOI: 10.3390/v15102026.
    [13]
    CHIRIKOV VV, MARX SE, MANTHENA SR, et al. Development of a comprehensive dataset of hepatitis C patients and examination of disease epidemiology in the United States, 2013-2016[J]. Adv Ther, 2018, 35( 7): 1087- 1102. DOI: 10.1007/s12325-018-0721-1.
    [14]
    CHURKIN A, KRISS S, UZIEL A, et al. Machine learning for mathematical models of HCV kinetics during antiviral therapy[J]. Math Biosci, 2022, 343: 108756. DOI: 10.1016/j.mbs.2021.108756.
    [15]
    PARK H, LO-CIGANIC WH, HUANG J, et al. Machine learning algorithms for predicting direct-acting antiviral treatment failure in chronic hepatitis C: An HCV-TARGET analysis[J]. Hepatology, 2022, 76( 2): 483- 491. DOI: 10.1002/hep.32347.
    [16]
    HAGA H, SATO H, KOSEKI A, et al. A machine learning-based treatment prediction model using whole genome variants of hepatitis C virus[J]. PLoS One, 2020, 15( 11): e0242028. DOI: 10.1371/journal.pone.0242028.
    [17]
    JANCZEWSKA E, KOŁEK MF, LORENC B, et al. Factors influencing the failure of interferon-free therapy for chronic hepatitis C: Data from the Polish EpiTer-2 cohort study[J]. World J Gastroenterol, 2021, 27( 18): 2177- 2192. DOI: 10.3748/wjg.v27.i18.2177.
    [18]
    SHOUSHA HI, AWAD AH, OMRAN DA, et al. Data mining and machine learning algorithms using IL28B genotype and biochemical markers best predicted advanced liver fibrosis in chronic hepatitis C[J]. Jpn J Infect Dis, 2018, 71( 1): 51- 57. DOI: 10.7883/yoken.JJID.2017.089.
    [19]
    HASHEM S, ESMAT G, ELAKEL W, et al. Comparison of machine learning approaches for prediction of advanced liver fibrosis in chronic hepatitis C patients[J]. IEEE/ACM Trans Comput Biol Bioinform, 2018, 15( 3): 861- 868. DOI: 10.1109/TCBB.2017.2690848.
    [20]
    KONERMAN MA, ZHANG YW, ZHU J, et al. Improvement of predictive models of risk of disease progression in chronic hepatitis C by incorporating longitudinal data[J]. Hepatology, 2015, 61( 6): 1832- 1841. DOI: 10.1002/hep.27750.
    [21]
    IOANNOU GN, TANG WJ, BESTE LA, et al. Assessment of a deep learning model to predict hepatocellular carcinoma in patients with hepatitis C cirrhosis[J]. JAMA Netw Open, 2020, 3( 9): e2015626. DOI: 10.1001/jamanetworkopen.2020.15626.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (106) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return