[1] |
CAO MM, LI H, SUN DQ, et al. Global epidemiology of liver cancer in 2020[J]. Chin J Cancer Prev Treat, 2022, 29( 5): 322- 328. DOI: 10.16073/j.cnki.cjcpt.2022.05.03.
曹毛毛, 李贺, 孙殿钦, 等. 全球肝癌2020年流行病学现状[J]. 中华肿瘤防治杂志, 2022, 29( 5): 322- 328. DOI: 10.16073/j.cnki.cjcpt.2022.05.03.
|
[2] |
NING L, SUN JG. Research progress of traditional Chinese medcine and western medicine in precancerous lesions of primary hepatic carcinoma[J]. Mod Tradit Chin Med Mater Med World Sci Technol, 2021, 23( 10): 3590- 3598. DOI: 10.11842/wst.20210506008.
宁麟, 孙建光. 原发性肝癌癌前病变中西医研究进展[J]. 世界科学技术-中医药现代化, 2021, 23( 10): 3590- 3598. DOI: 10.11842/wst.20210506008.
|
[3] |
WANG GH. Clinical and pathological features of cryptogenic liver cancer[D]. Changchun: Jilin University, 2016.
王国华. 隐源性肝癌的临床特点及病理特征分析[D]. 长春: 吉林大学, 2016.
|
[4] |
KÄRÄJÄMÄKI AJ, BLOIGU R, KAUMA H, et al. Non-alcoholic fatty liver disease with and without metabolic syndrome: Different long-term outcomes[J]. Metabolism, 2017, 66: 55- 63. DOI: 10.1016/j.metabol.2016.06.009.
|
[5] |
ZHANG YY, ZHANG T, ZHANG CQ, et al. Identification of reciprocal causality between non-alcoholic fatty liver disease and metabolic syndrome by a simplified Bayesian network in a Chinese population[J]. BMJ Open, 2015, 5( 9): e008204. DOI: 10.1136/bmjopen-2015-008204.
|
[6] |
XUE R, FAN JG. Brief introduction of an international expert consensus statement: A new definition of metabolic associated fatty liver disease[J]. J Clin Hepatol, 2020, 36( 6): 1224- 1227. DOI: 10.3969/j.issn.1001-5256.2020.06.007.
薛芮, 范建高. 代谢相关脂肪性肝病新定义的国际专家共识简介[J]. 临床肝胆病杂志, 2020, 36( 6): 1224- 1227. DOI: 10.3969/j.issn.1001-5256.2020.06.007.
|
[7] |
JIANG TT, SUN FF, ZENG Z, et al. Progress on metabolic associated fatty liver disease related liver cancer[J/CD]. Chin J Liver Dis(Electronic Version), 2022, 14( 3): 14- 17. DOI: 10.3969/j.issn.1674-7380.2022.03.004.
蒋婷婷, 孙芳芳, 曾湛, 等. 代谢相关脂肪性肝病相关肝癌研究进展[J/CD]. 中国肝脏病杂志(电子版), 2022, 14( 3): 14- 17. DOI: 10.3969/j.issn.1674-7380.2022.03.004.
|
[8] |
JARUVONGVANICH V, SANGUANKEO A, RIANGWIWAT T, et al. Testosterone, sex hormone-binding globulin and nonalcoholic fatty liver disease: A systematic review and meta-analysis[J]. Ann Hepatol, 2017, 16( 3): 382- 394. DOI: 10.5604/16652681.1235481.
|
[9] |
WANG S, ZHANG J, JIANG XZ, et al. Relationship between waist circumference trajectory and new-onset non alcoholic fatty liver disease in the non-obese population[J]. Chin J Epidemiol, 2020, 41( 6): 824- 828. DOI: 10.3760/cma.j.cn112338-20190630-00479.
王珊, 张健, 蒋晓忠, 等. 非肥胖人群的腰围轨迹与新发非酒精性脂肪肝的相关性[J]. 中华流行病学杂志, 2020, 41( 6): 824- 828. DOI: 10.3760/cma.j.cn112338-20190630-00479.
|
[10] |
SARKAR M, YATES K, SUZUKI A, et al. Low testosterone is associated with nonalcoholic steatohepatitis and fibrosis severity in men[J]. Clin Gastroenterol Hepatol, 2021, 19( 2): 400- 402. DOI: 10.1016/j.cgh.2019.11.053.
|
[11] |
LEE JH, JEON S, LEE HS, et al. Cutoff points of waist circumference for predicting incident non-alcoholic fatty liver disease in middle-aged and older Korean adults[J]. Nutrients, 2022, 14( 14): 2994. DOI: 10.3390/nu14142994.
|
[12] |
NING L, SUN JG. Associations between body circumference and testosterone levels and risk of metabolic dysfunction-associated fatty liver disease: A Mendelian randomization study[J]. BMC Public Health, 2023, 23( 1): 602. DOI: 10.1186/s12889-023-15467-4.
|
[13] |
FRANCHITTO A, CARPINO G, ALISI A, et al. The contribution of the adipose tissue-liver axis in pediatric patients with nonalcoholic fatty liver disease after laparoscopic sleeve gastrectomy[J]. J Pediatr, 2020, 216: 117- 127. DOI: 10.1016/j.jpeds.2019.07.037.
|
[14] |
POLYZOS SA, KOUNTOURAS J, MANTZOROS CS. Adipose tissue, obesity and non-alcoholic fatty liver disease[J]. Minerva Endocrinol, 2017, 42( 2): 92- 108. DOI: 10.23736/S0391-1977.16.02563-3.
|
[15] |
ÁLVAREZ-MERCADO AI, BUJALDON E, GRACIA-SANCHO J, et al. The role of adipokines in surgical procedures requiring both liver regeneration and vascular occlusion[J]. Int J Mol Sci, 2018, 19( 11): 3395. DOI: 10.3390/ijms19113395.
|
[16] |
YANG T, XUE JL. Research progress on the pathogenesis and carcinogenesis of colorectal polyps in patients with type 2 diabetes mellitus[J]. Chin J New Clin Med, 2024, 17( 1): 113- 118. DOI: 10.3969/j.issn.1674-3806.2024.01.21.
杨腾, 薛君力. 2型糖尿病患者结直肠息肉发病及癌变机制的研究进展[J]. 中国临床新医学, 2024, 17( 1): 113- 118. DOI: 10.3969/j.issn.1674-3806.2024.01.21.
|
[17] |
XU Y, LI ZX, MA Y, et al. Cancer disease burden attributable to type 2 diabetes mellitus among adults in China, 1990-2019[J]. China Cancer, 2022, 31( 12): 959- 966. DOI: 10.11735/j.issn.1004-0242.2022.12.A004.
徐英, 李志学, 马艳, 等. 1990—2019年中国成年人归因于2型糖尿病的癌症疾病负担研究[J]. 中国肿瘤, 2022, 31( 12): 959- 966. DOI: 10.11735/j.issn.1004-0242.2022.12.A004.
|
[18] |
CHEN XY, CHEN JH, YANG YL. Research progress on the mechanism, prevention and treatment of obesity-related tumors[J/OL]. Electron J Metab Nutr Cancer, 2022, 9( 6): 714- 720. DOI: 10.16689/j.cnki.cn11-9349/r.2022.06.006.
陈系羽, 陈京浩, 杨雁灵. 肥胖相关肿瘤发生机制和防治研究进展[J/OL]. 肿瘤代谢与营养电子杂志, 2022, 9( 6): 714- 720. DOI: 10.16689/j.cnki.cn11-9349/r.2022.06.006.
|
[19] |
WANG H. Risk factors and mechanism of cancer in type 2 diabetes patients in Changchuna[D]. Changchun: Jilin University, 2023.
王欢. 长春地区2型糖尿病患者伴发癌症的危险因素分析及机制探讨[D]. 长春: 吉林大学, 2023.
|
[20] |
DONATO J Jr. Programming of metabolism by adipokines during development[J]. Nat Rev Endocrinol, 2023, 19( 7): 385- 397. DOI: 10.1038/s41574-023-00828-1.
|
[21] |
ZHANG Y, PROENCA R, MAFFEI M, et al. Positional cloning of the mouse obese gene and its human homologue[J]. Nature, 1994, 372( 6505): 425- 432. DOI: 10.1038/372425a0.
|
[22] |
LIN TC, HUANG KW, LIU CW, et al. Leptin signaling axis specifically associates with clinical prognosis and is multifunctional in regulating cancer progression[J]. Oncotarget, 2018, 9( 24): 17210- 17219. DOI: 10.18632/oncotarget.24966.
|
[23] |
KAN ZY, ZHENG HC, LIU X, et al. Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma[J]. Genome Res, 2013, 23( 9): 1422- 1433. DOI: 10.1101/gr.154492.113.
|
[24] |
TONG HV, BOCK CT, VELAVAN TP. Genetic insights on host and hepatitis B virus in liver diseases[J]. Mutat Res Rev Mutat Res, 2014, 762: 65- 75. DOI: 10.1016/j.mrrev.2014.06.001.
|
[25] |
ZHANG B, ZHONG DW, WANG QW, et al. Study on correlation of JAK/STAT signal pathway with progression and prognosis in hepatocellular carcinoma[J]. Chin J Cell Mol Immunol, 2010, 26( 4): 368- 370, 373. DOI: 10.13423/j.cnki.cjcmi.005452.
张斌, 钟德玝, 王群伟, 等. JAK/STAT信号通路与肝细胞性肝癌的肿瘤进展和预后的相关性研究[J]. 细胞与分子免疫学杂志, 2010, 26( 4): 368- 370, 373. DOI: 10.13423/j.cnki.cjcmi.005452.
|
[26] |
GAO PL, LI HY, YANG XF, et al. JAK/STAT3 signaling system regulates hTERT through leptin in hepatocellular carcinoma cells[J]. World Chin J Dig, 2015, 23( 35): 5613- 5619.
高培亮, 李海洋, 杨晓峰, 等. JAK/STAT3信号系统通过瘦素调控hTERT在肝癌细胞中的作用[J]. 世界华人消化杂志, 2015, 23( 35): 5613- 5619.
|
[27] |
LONARDO A, NASCIMBENI F, MAURANTONIO M, et al. Nonalcoholic fatty liver disease: Evolving paradigms[J]. World J Gastroenterol, 2017, 23( 36): 6571- 6592. DOI: 10.3748/wjg.v23.i36.6571.
|
[28] |
POUR FK, ARYAEIAN N, MOKHTARE M, et al. The effect of saffron supplementation on some inflammatory and oxidative markers, leptin, adiponectin, and body composition in patients with nonalcoholic fatty liver disease: A double-blind randomized clinical trial[J]. Phytother Res, 2020, 34( 12): 3367- 3378. DOI: 10.1002/ptr.6791.
|
[29] |
HU LP, CAI H, LI QJ, et al. Study on the pathogenesis of metabolism associated fatty liver disease[J]. J Med Inf, 2023, 36( 23): 174- 179. DOI: 10.3969/j.issn.1006-1959.2023.23.044.
胡丽平, 蔡华, 李情娇, 等. 代谢相关脂肪性肝病发病机制的研究[J]. 医学信息, 2023, 36( 23): 174- 179. DOI: 10.3969/j.issn.1006-1959.2023.23.044.
|
[30] |
ZHANG QZ, LIU YL, WANG YR, et al. Effects of telmisartan on improving leptin resistance and inhibiting hepatic fibrosis in rats with non-alcoholic fatty liver disease[J]. Exp Ther Med, 2017, 14( 3): 2689- 2694. DOI: 10.3892/etm.2017.4809.
|
[31] |
QIU Y, WANG SF, YU C, et al. Association of circulating adipsin, visfatin, and adiponectin with nonalcoholic fatty liver disease in adults: A case-control study[J]. Ann Nutr Metab, 2019, 74( 1): 44- 52. DOI: 10.1159/000495215.
|
[32] |
GUO YD, DENG YJ, SUN HL, et al. To investigate the levels of adipsin, visfatin and irisin in patients with nonalcoholic fatty liver disease(NAFLD)and their correlation[J]. J Pract Med, 2020, 36( 17): 2376- 2380. DOI: 10.3969/j.issn.1006-5725.2020.17.012.
郭娅棣, 邓玉杰, 孙洪林, 等. 非酒精性脂肪肝患者血清脂肪素、内脂素和鸢尾素水平及其相关性[J]. 实用医学杂志, 2020, 36( 17): 2376- 2380. DOI: 10.3969/j.issn.1006-5725.2020.17.012.
|
[33] |
GUO X, JIAO L, YI Y, et al. NAMPT regulates mitochondria function and lipid metabolism during porcine oocyte maturation[J]. J Cell Physiol, 2024, 239( 1): 180- 192. DOI: 10.1002/jcp.31156.
|
[34] |
YANG L, ZHI SS. Relationship between the serum levels of CK-18, visfatin and liver fibrosis indexes in patients with NAFLD[J]. Hebei Med J, 2019, 41( 11): 1726- 1728. DOI: 10.3969/j.issn.1002-7386.2019.11.032.
杨丽, 智深深. NAFLD患者血清CK-18、内脂素水平变化与纤维化指标的关系[J]. 河北医药, 2019, 41( 11): 1726- 1728. DOI: 10.3969/j.issn.1002-7386.2019.11.032.
|
[35] |
YANG N, SUN RB, ZHANG XL, et al. Alternative pathway of bile acid biosynthesis contributes to ameliorate NASH after induction of NAMPT/NAD+/SIRT1 axis[J]. Biomed Pharmacother, 2023, 164: 114987. DOI: 10.1016/j.biopha.2023.114987.
|
[36] |
MA R, WU YS, ZHAI YS, et al. Exogenous pyruvate represses histone gene expression and inhibits cancer cell proliferation via the NAMPT-NAD+-SIRT1 pathway[J]. Nucleic Acids Res, 2019, 47( 21): 11132- 11150. DOI: 10.1093/nar/gkz864.
|
[37] |
SUN BL, SUN XG, KEMPF CL, et al. Involvement of eNAMPT/TLR4 inflammatory signaling in progression of non-alcoholic fatty liver disease, steatohepatitis, and fibrosis[J]. FASEB J, 2023, 37( 3): e22825. DOI: 10.1096/fj.202201972RR.
|
[38] |
LUCENA-CACACE A, OTERO-ALBIOL D, JIMÉNEZ-GARCÍA MP, et al. NAMPT is a potent oncogene in colon cancer progression that modulates cancer stem cell properties and resistance to therapy through Sirt1 and PARP[J]. Clin Cancer Res, 2018, 24( 5): 1202- 1215. DOI: 10.1158/1078-0432.CCR-17-2575.
|
[39] |
LUCENA-CACACE A, OTERO-ALBIOL D, JIMÉNEZ-GARCÍA MP, et al. NAMPT overexpression induces cancer stemness and defines a novel tumor signature for glioma prognosis[J]. Oncotarget, 2017, 8( 59): 99514- 99530. DOI: 10.18632/oncotarget.20577.
|
[40] |
LV HW, LV GS, CHEN CA, et al. NAD+ metabolism maintains inducible PD-L1 expression to drive tumor immune evasion[J]. Cell Metab, 2021, 33( 1): 110- 127. DOI: 10.1016/j.cmet.2020.10.021.
|
[41] |
ADYA R, TAN BK, CHEN J, et al. Nuclear factor-kappaB induction by visfatin in human vascular endothelial cells: Its role in MMP-2/9 production and activation[J]. Diabetes Care, 2008, 31( 4): 758- 760. DOI: 10.2337/dc07-1544.
|
[42] |
CHANG Q. Immunomodulatory role of nicotinamide phosphoribosyltransferase(NAMPT) in chronic hepatitis B and hepatocellular carcinoma[D]. Jinan: Shandong University, 2023.
常晴. 烟酰胺磷酸核糖转移酶(NAMPT)在慢性乙型肝炎和肝癌中的免疫调节作用[D]. 济南: 山东大学, 2023.
|
[43] |
SCHERER PE, WILLIAMS S, FOGLIANO M, et al. A novel serum protein similar to C1q, produced exclusively in adipocytes[J]. J Biol Chem, 1995, 270( 45): 26746- 26749. DOI: 10.1074/jbc.270.45.26746.
|
[44] |
CHINA S PAL, SANYAL S, CHATTOPADHYAY N. Adiponectin signaling and its role in bone metabolism[J]. Cytokine, 2018, 112: 116- 131. DOI: 10.1016/j.cyto.2018.06.012.
|
[45] |
LIU QQ, GAUTHIER MS, SUN L, et al. Activation of AMP-activated protein kinase signaling pathway by adiponectin and insulin in mouse adipocytes: Requirement of acyl-CoA synthetases FATP1 and Acsl1 and association with an elevation in AMP/ATP ratio[J]. FASEB J, 2010, 24( 11): 4229- 4239. DOI: 10.1096/fj.10-159723.
|
[46] |
YOON MJ, LEE GY, CHUNG JJ, et al. Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor alpha[J]. Diabetes, 2006, 55( 9): 2562- 2570. DOI: 10.2337/db05-1322.
|
[47] |
FANG XP, PALANIVEL R, CRESSER J, et al. An APPL1-AMPK signaling axis mediates beneficial metabolic effects of adiponectin in the heart[J]. Am J Physiol Endocrinol Metab, 2010, 299( 5): E721- E729. DOI: 10.1152/ajpendo.00086.2010.
|
[48] |
TOMAS E, TSAO TS, SAHA AK, et al. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: Acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation[J]. Proc Natl Acad Sci U S A, 2002, 99( 25): 16309- 16313. DOI: 10.1073/pnas.222657499.
|
[49] |
DENG DT, WANG YM, CHENG Y, et al. Adiponectin activates AMP-activated protein kinase via LKB1 pathway[J]. Chin J Endocrinol Metab, 2012, 28( 7): 578- 583. DOI: 10.3760/cma.j.issn.1000-6699.2012.07.014.
邓大同, 王佑民, 程媛, 等. 脂联素通过LKB1途径激活腺苷酸活化蛋白激酶[J]. 中华内分泌代谢杂志, 2012, 28( 7): 578- 583. DOI: 10.3760/cma.j.issn.1000-6699.2012.07.014.
|
[50] |
YOU M, ROGERS CQ. Adiponectin: A key adipokine in alcoholic fatty liver[J]. Exp Biol Med(Maywood), 2009, 234( 8): 850- 859. DOI: 10.3181/0902-MR-61.
|
[51] |
YAMAUCHI T, NIO Y, MAKI T, et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions[J]. Nat Med, 2007, 13( 3): 332- 339. DOI: 10.1038/nm1557.
|
[52] |
KIM SJ, TANG TY, ABBOTT M, et al. AMPK phosphorylates desnutrin/ATGL and hormone-sensitive lipase to regulate lipolysis and fatty acid oxidation within adipose tissue[J]. Mol Cell Biol, 2016, 36( 14): 1961- 1976. DOI: 10.1128/MCB.00244-16.
|
[53] |
ANTUNA-PUENTE B, FEVE B, FELLAHI S, et al. Adipokines: The missing link between insulin resistance and obesity[J]. Diabetes Metab, 2008, 34( 1): 2- 11. DOI: 10.1016/j.diabet.2007.09.004.
|
[54] |
MANIERI E, HERRERA-MELLE L, MORA A, et al. Adiponectin accounts for gender differences in hepatocellular carcinoma incidence[J]. J Exp Med, 2019, 216( 5): 1108- 1119. DOI: 10.1084/jem.20181288.
|
[55] |
DALAMAGA M, DIAKOPOULOS KN, MANTZOROS CS. The role of adiponectin in cancer: A review of current evidence[J]. Endocr Rev, 2012, 33( 4): 547- 594. DOI: 10.1210/er.2011-1015.
|
[56] |
XIE X, YAN D, LI HB, et al. Enhancement of adiponectin ameliorates nonalcoholic fatty liver disease via inhibition of FoxO1 in type I diabetic rats[J]. J Diabetes Res, 2018, 2018: 6254340. DOI: 10.1155/2018/6254340.
|
[57] |
XU HY, ZHU HJ, PAN H, et al. Effects of adiponectin on the gene promoter activities of fatty acid synthase and hormone sensitive lipase in HepG2 cells[J]. Basic Clin Med, 2021, 41( 1): 13- 19. DOI: 10.16352/j.issn.1001-6325.2021.01.005.
许瀚元, 朱惠娟, 潘慧, 等. 脂联素对HepG2细胞中脂肪酸合成酶及激素敏感性脂肪酶基因启动子活性的影响[J]. 基础医学与临床, 2021, 41( 1): 13- 19. DOI: 10.16352/j.issn.1001-6325.2021.01.005.
|
[58] |
EBERT T, GEBHARDT C, SCHOLZ M, et al. Relationship between 12 adipocytokines and distinct components of the metabolic syndrome[J]. J Clin Endocrinol Metab, 2018, 103( 3): 1015- 1023. DOI: 10.1210/jc.2017-02085.
|
[59] |
SELL H, DIVOUX A, POITOU C, et al. Chemerin correlates with markers for fatty liver in morbidly obese patients and strongly decreases after weight loss induced by bariatric surgery[J]. J Clin Endocrinol Metab, 2010, 95( 6): 2892- 2896. DOI: 10.1210/jc.2009-2374.
|
[60] |
POHL R, HABERL EM, REIN-FISCHBOECK L, et al. Hepatic chemerin mRNA expression is reduced in human nonalcoholic steatohepatitis[J]. Eur J Clin Invest, 2017, 47( 1): 7- 18. DOI: 10.1111/eci.12695.
|
[61] |
GALON J, ANGELL HK, BEDOGNETTI D, et al. The continuum of cancer immunosurveillance: Prognostic, predictive, and mechanistic signatures[J]. Immunity, 2013, 39( 1): 11- 26. DOI: 10.1016/j.immuni.2013.07.008.
|
[62] |
MITCHELL D, CHINTALA S, DEY M. Plasmacytoid dendritic cell in immunity and cancer[J]. J Neuroimmunol, 2018, 322: 63- 73. DOI: 10.1016/j.jneuroim.2018.06.012.
|
[63] |
ROURKE JL, DRANSE HJ, SINAL CJ. CMKLR1 and GPR1 mediate chemerin signaling through the RhoA/ROCK pathway[J]. Mol Cell Endocrinol, 2015, 417: 36- 51. DOI: 10.1016/j.mce.2015.09.002.
|
[64] |
KRONES-HERZIG A, ADAMSON E, MERCOLA D. Early growth response 1 protein, an upstream gatekeeper of the p53 tumor suppressor, controls replicative senescence[J]. Proc Natl Acad Sci U S A, 2003, 100( 6): 3233- 3238. DOI: 10.1073/pnas.2628034100.
|
[65] |
NAIR P, MUTHUKKUMAR S, SELLS SF, et al. Early growth response-1-dependent apoptosis is mediated by p53[J]. J Biol Chem, 1997, 272( 32): 20131- 20138. DOI: 10.1074/jbc.272.32.20131.
|
[66] |
LIU-CHITTENDEN Y, JAIN M, GASKINS K, et al. RARRES2 functions as a tumor suppressor by promoting β-catenin phosphorylation/degradation and inhibiting p38 phosphorylation in adrenocortical carcinoma[J]. Oncogene, 2017, 36( 25): 3541- 3552. DOI: 10.1038/onc.2016.497.
|
[67] |
RAGHUWANSHI SK, NASSER MW, CHEN XX, et al. Depletion of beta-arrestin-2 promotes tumor growth and angiogenesis in a murine model of lung cancer[J]. J Immunol, 2008, 180( 8): 5699- 5706. DOI: 10.4049/jimmunol.180.8.5699.
|
[68] |
WANG CH, WU WKK, LIU XD, et al. Increased serum chemerin level promotes cellular invasiveness in gastric cancer: A clinical and experimental study[J]. Peptides, 2014, 51: 131- 138. DOI: 10.1016/j.peptides.2013.10.009.
|
[69] |
LIN W, CHEN YL, JIANG L, et al. Reduced expression of chemerin is associated with a poor prognosis and a lowed infiltration of both dendritic cells and natural killer cells in human hepatocellular carcinoma[J]. Clin Lab, 2011, 57( 11-12): 879- 885.
|
[70] |
MENYHÁRT O, NAGY Á, GYŐRFFY B. Determining consistent prognostic biomarkers of overall survival and vascular invasion in hepatocellular carcinoma[J]. R Soc Open Sci, 2018, 5( 12): 181006. DOI: 10.1098/rsos.181006.
|
[71] |
KLÖTING N, KOVACS P, KERN M, et al. Central vaspin administration acutely reduces food intake and has sustained blood glucose-lowering effects[J]. Diabetologia, 2011, 54( 7): 1819- 1823. DOI: 10.1007/s00125-011-2137-1.
|
[72] |
WU GX, ZHOU ZH, SUN JJ, et al. Effect of Vaspin on liver lipid aggregation in mice fed with high fat[J]. Chin J Gerontol, 2018, 38( 13): 3206- 3209. DOI: 10.3969/j.issn.1005-9202.2018.13.054.
吴光秀, 周泽华, 孙建娟, 等. Vaspin对高脂喂养小鼠肝脏脂质聚集的影响[J]. 中国老年学杂志, 2018, 38( 13): 3206- 3209. DOI: 10.3969/j.issn.1005-9202.2018.13.054.
|
[73] |
CHEN XM, ZHANG L, QI LM, et al. The expression and clinical significance of adipokine Vaspin in nonalcoholic fatty liver disease[J]. China J Mod Med, 2021, 31( 6): 37- 43. DOI: 10.3969/j.issn.1005-8982.2021.06.008.
陈香梅, 张亮, 齐立明, 等. 脂肪因子Vaspin在非酒精性脂肪性肝病中的表达及其临床意义[J]. 中国现代医学杂志, 2021, 31( 6): 37- 43. DOI: 10.3969/j.issn.1005-8982.2021.06.008.
|
[74] |
LI HL, PENG WH, ZHUANG JH, et al. Vaspin attenuates high glucose-induced vascular smooth muscle cells proliferation and chemokinesis by inhibiting the MAPK, PI3K/Akt, and NF-κB signaling pathways[J]. Atherosclerosis, 2013, 228( 1): 61- 68. DOI: 10.1016/j.atherosclerosis.2013.02.013.
|
[75] |
MA H. Effect of endogenous phlegm-dampness on fat factor Vaspin in serum of CIA mice[D]. Shenyang: China Medical University, 2022.
马欢. 内生痰湿对CIA小鼠血清中脂肪因子Vaspin的影响[D]. 沈阳: 中国医科大学, 2022.
|
[76] |
WALUGA M, KUKLA M, ŻORNIAK M, et al. Vaspin mRNA levels in the liver of morbidly obese women with nonalcoholic fatty liver disease[J]. Pol J Pathol, 2017, 68( 2): 128- 137. DOI: 10.5114/pjp.2017.69688.
|
[77] |
SKONIECZNA M, HUDY D, HEJMO T, et al. The adipokine vaspin reduces apoptosis in human hepatocellular carcinoma(Hep-3B) cells, associated with lower levels of NO and superoxide anion[J]. BMC Pharmacol Toxicol, 2019, 20( 1): 58. DOI: 10.1186/s40360-019-0334-6.
|
[78] |
BOOTH A, MAGNUSON A, FOUTS J, et al. Adipose tissue, obesity and adipokines: Role in cancer promotion[J]. Horm Mol Biol Clin Investig, 2015, 21( 1): 57- 74. DOI: 10.1515/hmbci-2014-0037.
|
[79] |
KUKLA M, MAZUR W, BUŁDAK RJ, et al. Potential role of leptin, adiponectin and three novel adipokines—visfatin, chemerin and vaspin—in chronic hepatitis[J]. Mol Med, 2011, 17( 11-12): 1397- 1410. DOI: 10.2119/molmed.2010.00105.
|
[80] |
ERDOGAN S, SEZER S, BASER E, et al. Evaluating vaspin and adiponectin in postmenopausal women with endometrial cancer[J]. Endocr Relat Cancer, 2013, 20( 5): 669- 675. DOI: 10.1530/ERC-13-0280.
|
[81] |
FAZELI MS, DASHTI H, AKBARZADEH S, et al. Circulating levels of novel adipocytokines in patients with colorectal cancer[J]. Cytokine, 2013, 62( 1): 81- 85. DOI: 10.1016/j.cyto.2013.02.012.
|
[82] |
LACROIX M, RISCAL R, ARENA G, et al. Metabolic functions of the tumor suppressor p53: Implications in normal physiology, metabolic disorders, and cancer[J]. Mol Metab, 2020, 33: 2- 22. DOI: 10.1016/j.molmet.2019.10.002.
|
[83] |
MAO YX, JIANG P. The crisscross between p53 and metabolism in cancer[J]. Acta Biochim Biophys Sin(Shanghai), 2023, 55( 6): 914- 922. DOI: 10.3724/abbs.2023109.
|
[84] |
LIN YM. The role and mechanism of p53/PXR-SCD1 axis in nonalcoholic fatty liver disease[D]. Hangzhou: Zhejiang University, 2020.
林一鸣. p53/PXR-SCD1调控轴在NAFLD中的作用及机制研究[D]. 杭州: 浙江大学, 2020.
|
[85] |
DENG Y, DUAN Y. Research progress on pathogenesis and drug therapy of primary liver cancer[J]. Hebei Med, 2024, 30( 2): 345- 348. DOI: 10.3969/j.issn.1006-6233.2024.02.034.
邓燕, 段勇. 原发性肝癌发病机制和药物治疗的研究进展[J]. 河北医学, 2024, 30( 2): 345- 348. DOI: 10.3969/j.issn.1006-6233.2024.02.034.
|
[86] |
LI W, KOU JJ, ZHANG ZX, et al. Cellular redox homeostasis maintained by malic enzyme 2 is essential for MYC-driven T cell lymphomagenesis[J]. Proc Natl Acad Sci U S A, 2023, 120( 23): e2217869120. DOI: 10.1073/pnas.2217869120.
|
[87] |
MOON SH, HUANG CH, HOULIHAN SL, et al. p53 represses the mevalonate pathway to mediate tumor suppression[J]. Cell, 2019, 176( 3): 564- 580. DOI: 10.1016/j.cell.2018.11.011.
|
[88] |
GÓMEZ-SANTOS B, SAENZ DE URTURI D, NUÑEZ-GARCÍA M, et al. Liver osteopontin is required to prevent the progression of age-related nonalcoholic fatty liver disease[J]. Aging Cell, 2020, 19( 8): e13183. DOI: 10.1111/acel.13183.
|
[89] |
KANG JG, LAGO CU, LEE JE, et al. A mouse homolog of a human TP53 germline mutation reveals a lipolytic activity of p53[J]. Cell Rep, 2020, 30( 3): 783- 792. DOI: 10.1016/j.celrep.2019.12.074.
|
[90] |
WANG H. The role of ankyrin-repeat-containing, SH3-domain-containing, and proline-rich-region- containing protein 2(ASPP2) in lipid metabolism in hepatocellular carcinoma[D]. Shanghai: Second Military Medical University, 2017.
汪浩. p53凋亡刺激蛋白2调控肝癌脂质代谢的研究[D]. 上海: 第二军医大学, 2017.
|
[91] |
FOLKMAN J, HAHNFELDT P, HLATKY L. Cancer: Looking outside the genome[J]. Nat Rev Mol Cell Biol, 2000, 1( 1): 76- 79. DOI: 10.1038/35036100.
|
[92] |
KANDA H, TATEYA S, TAMORI Y, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity[J]. J Clin Invest, 2006, 116( 6): 1494- 1505. DOI: 10.1172/JCI26498.
|
[93] |
SHIMIZU I, YOSHIDA Y, KATSUNO T, et al. p53-induced adipose tissue inflammation is critically involved in the development of insulin resistance in heart failure[J]. Cell Metab, 2012, 15( 1): 51- 64. DOI: 10.1016/j.cmet.2011.12.006.
|