[1] |
WONG VWS, EKSTEDT M, WONG GLH, et al. Changing epidemiology, global trends and implications for outcomes of NAFLD[J]. J Hepatol, 2023, 79( 3): 842- 852. DOI: 10.1016/j.jhep.2023.04.036.
|
[2] |
KOKKORAKIS M, BOUTARI C, HILL MA, et al. Resmetirom, the first approved drug for the management of metabolic dysfunction-associated steatohepatitis: Trials, opportunities, and challenges[J]. Metabolism, 2024, 154: 155835. DOI: 10.1016/j.metabol.2024.155835.
|
[3] |
SHUM M, NGO J, SHIRIHAI OS, et al. Mitochondrial oxidative function in NAFLD: Friend or foe?[J]. Mol Metab, 2021, 50: 101134. DOI: 10.1016/j.molmet.2020.101134.
|
[4] |
WU LW, MO WH, FENG J, et al. Astaxanthin attenuates hepatic damage and mitochondrial dysfunction in non-alcoholic fatty liver disease by up-regulating the FGF21/PGC-1α pathway[J]. Br J Pharmacol, 2020, 177( 16): 3760- 3777. DOI: 10.1111/bph.15099.
|
[5] |
PARADIES G, PARADIES V, RUGGIERO FM, et al. Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease[J]. World J Gastroenterol, 2014, 20( 39): 14205- 14218. DOI: 10.3748/wjg.v20.i39.14205.
|
[6] |
YU LP, LI YJ, WANG T, et al. In vivo recognition of bioactive substances of Polygonum multiflorum for protecting mitochondria against metabolic dysfunction-associated fatty liver disease[J]. World J Gastroenterol, 2023, 29( 1): 171- 189. DOI: 10.3748/wjg.v29.i1.171.
|
[7] |
di CIAULA A, PASSARELLA S, SHANMUGAM H, et al. Nonalcoholic fatty liver disease(NAFLD). Mitochondria as players and targets of therapies?[J]. Int J Mol Sci, 2021, 22( 10): 5375. DOI: 10.3390/ijms22105375.
|
[8] |
MORIO B, PANTHU B, BASSOT A, et al. Role of mitochondria in liver metabolic health and diseases[J]. Cell Calcium, 2021, 94: 102336. DOI: 10.1016/j.ceca.2020.102336.
|
[9] |
KOLIAKI C, SZENDROEDI J, KAUL K, et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis[J]. Cell Metab, 2015, 21( 5): 739- 746. DOI: 10.1016/j.cmet.2015.04.004.
|
[10] |
MANSOURI A, GATTOLLIAT CH, ASSELAH T. Mitochondrial dysfunction and signaling in chronic liver diseases[J]. Gastroenterology, 2018, 155( 3): 629- 647. DOI: 10.1053/j.gastro.2018.06.083.
|
[11] |
IOZZO P, BUCCI M, ROIVAINEN A, et al. Fatty acid metabolism in the liver, measured by positron emission tomography, is increased in obese individuals[J]. Gastroenterology, 2010, 139( 3): 846- 856. e1- e6. DOI: 10.1053/j.gastro.2010.05.039.
|
[12] |
SUNNY NE, PARKS EJ, BROWNING JD, et al. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease[J]. Cell Metab, 2011, 14( 6): 804- 810. DOI: 10.1016/j.cmet.2011.11.004.
|
[13] |
MCGARRY JD, MANNAERTS GP, FOSTER DW. A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis[J]. J Clin Invest, 1977, 60( 1): 265- 270. DOI: 10.1172/JCI108764.
|
[14] |
SATAPATI S, KUCEJOVA B, DUARTE JAG, et al. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver[J]. J Clin Invest, 2015, 125( 12): 4447- 4462. DOI: 10.1172/JCI82204.
|
[15] |
COGLIATI S, ENRIQUEZ JA, SCORRANO L. Mitochondrial cristae: Where beauty meets functionality[J]. Trends Biochem Sci, 2016, 41( 3): 261- 273. DOI: 10.1016/j.tibs.2016.01.001.
|
[16] |
FORMOSA LE, RYAN MT. Mitochondrial OXPHOS complex assembly lines[J]. Nat Cell Biol, 2018, 20( 5): 511- 513. DOI: 10.1038/s41556-018-0098-z.
|
[17] |
WAI T, LANGER T. Mitochondrial dynamics and metabolic regulation[J]. Trends Endocrinol Metab, 2016, 27( 2): 105- 117. DOI: 10.1016/j.tem.2015.12.001.
|
[18] |
EISNER V, PICARD M, HAJNÓCZKY G. Mitochondrial dynamics in adaptive and maladaptive cellular stress responses[J]. Nat Cell Biol, 2018, 20( 7): 755- 765. DOI: 10.1038/s41556-018-0133-0.
|
[19] |
SIMULA L, CAMPANELLA M, CAMPELLO S. Targeting Drp1 and mitochondrial fission for therapeutic immune modulation[J]. Pharmacol Res, 2019, 146: 104317. DOI: 10.1016/j.phrs.2019.104317.
|
[20] |
STRACK S, CRIBBS JT. Allosteric modulation of Drp1 mechanoenzyme assembly and mitochondrial fission by the variable domain[J]. J Biol Chem, 2012, 287( 14): 10990- 11001. DOI: 10.1074/jbc.M112.342105.
|
[21] |
FRÖHLICH C, GRABIGER S, SCHWEFEL D, et al. Structural insights into oligomerization and mitochondrial remodelling of dynamin 1-like protein[J]. EMBO J, 2013, 32( 9): 1280- 1292. DOI: 10.1038/emboj.2013.74.
|
[22] |
KISHIDA H, SUGIO S. Crystal structure of GTPase domain fused with minimal stalks from human dynamin-1-like protein(Dlp1) in complex with several nucleotide analogues[J]. Curr Top Pept Protein Res, 2013, 14: 67- 77.
|
[23] |
RAMACHANDRAN R, SCHMID SL. The dynamin superfamily[J]. Curr Biol, 2018, 28( 8): R411- R416. DOI: 10.1016/j.cub.2017.12.013.
|
[24] |
JOSHI AU, SAW NL, SHAMLOO M, et al. Drp1/Fis1 interaction mediates mitochondrial dysfunction, bioenergetic failure and cognitive decline in Alzheimer’s disease[J]. Oncotarget, 2017, 9( 5): 6128- 6143. DOI: 10.18632/oncotarget.23640.
|
[25] |
JIN JY, WEI XX, ZHI XL, et al. Drp1-dependent mitochondrial fission in cardiovascular disease[J]. Acta Pharmacol Sin, 2021, 42( 5): 655- 664. DOI: 10.1038/s41401-020-00518-y.
|
[26] |
YU R, LIU T, JIN SB, et al. MIEF1/2 function as adaptors to recruit Drp1 to mitochondria and regulate the association of Drp1 with Mff[J]. Sci Rep, 2017, 7( 1): 880. DOI: 10.1038/s41598-017-00853-x.
|
[27] |
SOUNDARARAJAN R, HERNÁNDEZ-CUERVO H, STEARNS TM, et al. A-kinase anchor protein 1 deficiency causes mitochondrial dysfunction in mouse model of hyperoxia induced acute lung injury[J]. Front Pharmacol, 2022, 13: 980723. DOI: 10.3389/fphar.2022.980723.
|
[28] |
CRIBBS JT, STRACK S. Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death[J]. EMBO Rep, 2007, 8( 10): 939- 944. DOI: 10.1038/sj.embor.7401062.
|
[29] |
ADACHI Y, KATO T, YAMADA T, et al. Drp1 tubulates the ER in a GTPase-independent manner[J]. Mol Cell, 2020, 80( 4): 621- 632. e 6. DOI: 10.1016/j.molcel.2020.10.013.
|
[30] |
NAVARATNARAJAH T, ANAND R, REICHERT AS, et al. The relevance of mitochondrial morphology for human disease[J]. Int J Biochem Cell Biol, 2021, 134: 105951. DOI: 10.1016/j.biocel.2021.105951.
|
[31] |
WANG LX, ISHIHARA T, IBAYASHI Y, et al. Disruption of mitochondrial fission in the liver protects mice from diet-induced obesity and metabolic deterioration[J]. Diabetologia, 2015, 58( 10): 2371- 2380. DOI: 10.1007/s00125-015-3704-7.
|
[32] |
GALLOWAY CA, LEE H, BROOKES PS, et al. Decreasing mitochondrial fission alleviates hepatic steatosis in a murine model of nonalcoholic fatty liver disease[J]. Am J Physiol Gastrointest Liver Physiol, 2014, 307( 6): G632- G641. DOI: 10.1152/ajpgi.00182.2014.
|
[33] |
HAMMERSCHMIDT P, OSTKOTTE D, NOLTE H, et al. CerS6-derived sphingolipids interact with mff and promote mitochondrial fragmentation in obesity[J]. Cell, 2019, 177( 6): 1536- 1552. e 23. DOI: 10.1016/j.cell.2019.05.008.
|
[34] |
XIA WM, VEERAGANDHAM P, CAO Y, et al. Obesity causes mitochondrial fragmentation and dysfunction in white adipocytes due to RalA activation[J]. Nat Metab, 2024, 6( 2): 273- 289. DOI: 10.1038/s42255-024-00978-0.
|
[35] |
FRIEDMAN JR, LACKNER LL, WEST M, et al. ER tubules mark sites of mitochondrial division[J]. Science, 2011, 334( 6054): 358- 362. DOI: 10.1126/science.1207385.
|
[36] |
BRAVO-SAGUA R, PARRA V, ORTIZ-SANDOVAL C, et al. Caveolin-1 impairs PKA-DRP1-mediated remodelling of ER-mitochondria communication during the early phase of ER stress[J]. Cell Death Differ, 2019, 26( 7): 1195- 1212. DOI: 10.1038/s41418-018-0197-1.
|
[37] |
STEFFEN J, NGO J, WANG SP, et al. The mitochondrial fission protein Drp1 in liver is required to mitigate NASH and prevents the activation of the mitochondrial ISR[J]. Mol Metab, 2022, 64: 101566. DOI: 10.1016/j.molmet.2022.101566.
|
[38] |
WANG J, YANG Y, SUN F, et al. ALKBH5 attenuates mitochondrial fission and ameliorates liver fibrosis by reducing Drp1 methylation[J]. Pharmacol Res, 2023, 187: 106608. DOI: 10.1016/j.phrs.2022.106608.
|
[39] |
HU ZQ, ZHANG HY, WANG YT, et al. Exercise activates Sirt1-mediated Drp1 acetylation and inhibits hepatocyte apoptosis to improve nonalcoholic fatty liver disease[J]. Lipids Health Dis, 2023, 22( 1): 33. DOI: 10.1186/s12944-023-01798-z.
|
[40] |
LEMOS V, DE OLIVEIRA RM, NAIA LA, et al. The NAD+-dependent deacetylase SIRT2 attenuates oxidative stress and mitochondrial dysfunction and improves insulin sensitivity in hepatocytes[J]. Hum Mol Genet, 2017, 26( 21): 4105- 4117. DOI: 10.1093/hmg/ddx298.
|
[41] |
ZHANG LW, XIE XX, TAO JX, et al. Mystery of bisphenol F-induced nonalcoholic fatty liver disease-like changes: Roles of Drp1-mediated abnormal mitochondrial fission in lipid droplet deposition[J]. Sci Total Environ, 2023, 904: 166831. DOI: 10.1016/j.scitotenv.2023.166831.
|
[42] |
QUAN Y, SHOU DW, YANG SQ, et al. Mdivi1 ameliorates mitochondrial dysfunction in non-alcoholic steatohepatitis by inhibiting JNK/MFF signaling[J]. J Gastroenterol Hepatol, 2023, 38( 12): 2215- 2227. DOI: 10.1111/jgh.16372.
|
[43] |
ZHONG YJ, LI ZM, JIN RY, et al. Diosgenin ameliorated type II diabetes-associated nonalcoholic fatty liver disease through inhibiting de novo lipogenesis and improving fatty acid oxidation and mitochondrial function in rats[J]. Nutrients, 2022, 14( 23): 4994. DOI: 10.3390/nu14234994.
|
[44] |
DU JX, WANG TT, XIAO CY, et al. Pharmacological activation of AMPK prevents Drp1-mediated mitochondrial fission and alleviates hepatic steatosis In vitro[J]. Curr Mol Med, 2024, 24( 12): 1506- 1517. DOI: 10.2174/0115665240275594231229121030.
|