中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 41 Issue 1
Jan.  2025
Turn off MathJax
Article Contents

Role of dynamin-related protein 1 in non-alcoholic fatty liver disease

DOI: 10.12449/JCH250124
Research funding:

2023 Shaanxi Provincial Education Department Project (23JK0646)

More Information
  • Corresponding author: SHEN Haishan, 1055173553@qq.com (ORCID: 0009-0000-3101-7831)
  • Received Date: 2024-04-23
  • Accepted Date: 2024-06-17
  • Published Date: 2025-01-25
  • The morphological changes and functions of mitochondria are closely associated with the development and progression of non-alcoholic fatty liver disease (NAFLD). Dynamin-related protein 1 (Drp1) is one of the primary proteins determining mitochondrial fission, and its activity is strictly controlled to ensure the balance of mitochondrial dynamics according to cellular needs. Drp1 can enhance mitochondrial interactions and mitochondrial fission by promoting the formation of endoplasmic reticulum tubules, and the phosphorylation state and deacetylation of Drp1 can also affect the morphological changes of mitochondria, thereby affecting the status of NAFLD. This article elaborates on the role and mechanism of action of Drp1 in the progression of NAFLD, in order to provide ideas for targeted therapy for NAFLD.

     

  • loading
  • [1]
    WONG VWS, EKSTEDT M, WONG GLH, et al. Changing epidemiology, global trends and implications for outcomes of NAFLD[J]. J Hepatol, 2023, 79( 3): 842- 852. DOI: 10.1016/j.jhep.2023.04.036.
    [2]
    KOKKORAKIS M, BOUTARI C, HILL MA, et al. Resmetirom, the first approved drug for the management of metabolic dysfunction-associated steatohepatitis: Trials, opportunities, and challenges[J]. Metabolism, 2024, 154: 155835. DOI: 10.1016/j.metabol.2024.155835.
    [3]
    SHUM M, NGO J, SHIRIHAI OS, et al. Mitochondrial oxidative function in NAFLD: Friend or foe?[J]. Mol Metab, 2021, 50: 101134. DOI: 10.1016/j.molmet.2020.101134.
    [4]
    WU LW, MO WH, FENG J, et al. Astaxanthin attenuates hepatic damage and mitochondrial dysfunction in non-alcoholic fatty liver disease by up-regulating the FGF21/PGC-1α pathway[J]. Br J Pharmacol, 2020, 177( 16): 3760- 3777. DOI: 10.1111/bph.15099.
    [5]
    PARADIES G, PARADIES V, RUGGIERO FM, et al. Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease[J]. World J Gastroenterol, 2014, 20( 39): 14205- 14218. DOI: 10.3748/wjg.v20.i39.14205.
    [6]
    YU LP, LI YJ, WANG T, et al. In vivo recognition of bioactive substances of Polygonum multiflorum for protecting mitochondria against metabolic dysfunction-associated fatty liver disease[J]. World J Gastroenterol, 2023, 29( 1): 171- 189. DOI: 10.3748/wjg.v29.i1.171.
    [7]
    di CIAULA A, PASSARELLA S, SHANMUGAM H, et al. Nonalcoholic fatty liver disease(NAFLD). Mitochondria as players and targets of therapies?[J]. Int J Mol Sci, 2021, 22( 10): 5375. DOI: 10.3390/ijms22105375.
    [8]
    MORIO B, PANTHU B, BASSOT A, et al. Role of mitochondria in liver metabolic health and diseases[J]. Cell Calcium, 2021, 94: 102336. DOI: 10.1016/j.ceca.2020.102336.
    [9]
    KOLIAKI C, SZENDROEDI J, KAUL K, et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis[J]. Cell Metab, 2015, 21( 5): 739- 746. DOI: 10.1016/j.cmet.2015.04.004.
    [10]
    MANSOURI A, GATTOLLIAT CH, ASSELAH T. Mitochondrial dysfunction and signaling in chronic liver diseases[J]. Gastroenterology, 2018, 155( 3): 629- 647. DOI: 10.1053/j.gastro.2018.06.083.
    [11]
    IOZZO P, BUCCI M, ROIVAINEN A, et al. Fatty acid metabolism in the liver, measured by positron emission tomography, is increased in obese individuals[J]. Gastroenterology, 2010, 139( 3): 846- 856. e1- e6. DOI: 10.1053/j.gastro.2010.05.039.
    [12]
    SUNNY NE, PARKS EJ, BROWNING JD, et al. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease[J]. Cell Metab, 2011, 14( 6): 804- 810. DOI: 10.1016/j.cmet.2011.11.004.
    [13]
    MCGARRY JD, MANNAERTS GP, FOSTER DW. A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis[J]. J Clin Invest, 1977, 60( 1): 265- 270. DOI: 10.1172/JCI108764.
    [14]
    SATAPATI S, KUCEJOVA B, DUARTE JAG, et al. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver[J]. J Clin Invest, 2015, 125( 12): 4447- 4462. DOI: 10.1172/JCI82204.
    [15]
    COGLIATI S, ENRIQUEZ JA, SCORRANO L. Mitochondrial cristae: Where beauty meets functionality[J]. Trends Biochem Sci, 2016, 41( 3): 261- 273. DOI: 10.1016/j.tibs.2016.01.001.
    [16]
    FORMOSA LE, RYAN MT. Mitochondrial OXPHOS complex assembly lines[J]. Nat Cell Biol, 2018, 20( 5): 511- 513. DOI: 10.1038/s41556-018-0098-z.
    [17]
    WAI T, LANGER T. Mitochondrial dynamics and metabolic regulation[J]. Trends Endocrinol Metab, 2016, 27( 2): 105- 117. DOI: 10.1016/j.tem.2015.12.001.
    [18]
    EISNER V, PICARD M, HAJNÓCZKY G. Mitochondrial dynamics in adaptive and maladaptive cellular stress responses[J]. Nat Cell Biol, 2018, 20( 7): 755- 765. DOI: 10.1038/s41556-018-0133-0.
    [19]
    SIMULA L, CAMPANELLA M, CAMPELLO S. Targeting Drp1 and mitochondrial fission for therapeutic immune modulation[J]. Pharmacol Res, 2019, 146: 104317. DOI: 10.1016/j.phrs.2019.104317.
    [20]
    STRACK S, CRIBBS JT. Allosteric modulation of Drp1 mechanoenzyme assembly and mitochondrial fission by the variable domain[J]. J Biol Chem, 2012, 287( 14): 10990- 11001. DOI: 10.1074/jbc.M112.342105.
    [21]
    FRÖHLICH C, GRABIGER S, SCHWEFEL D, et al. Structural insights into oligomerization and mitochondrial remodelling of dynamin 1-like protein[J]. EMBO J, 2013, 32( 9): 1280- 1292. DOI: 10.1038/emboj.2013.74.
    [22]
    KISHIDA H, SUGIO S. Crystal structure of GTPase domain fused with minimal stalks from human dynamin-1-like protein(Dlp1) in complex with several nucleotide analogues[J]. Curr Top Pept Protein Res, 2013, 14: 67- 77.
    [23]
    RAMACHANDRAN R, SCHMID SL. The dynamin superfamily[J]. Curr Biol, 2018, 28( 8): R411- R416. DOI: 10.1016/j.cub.2017.12.013.
    [24]
    JOSHI AU, SAW NL, SHAMLOO M, et al. Drp1/Fis1 interaction mediates mitochondrial dysfunction, bioenergetic failure and cognitive decline in Alzheimer’s disease[J]. Oncotarget, 2017, 9( 5): 6128- 6143. DOI: 10.18632/oncotarget.23640.
    [25]
    JIN JY, WEI XX, ZHI XL, et al. Drp1-dependent mitochondrial fission in cardiovascular disease[J]. Acta Pharmacol Sin, 2021, 42( 5): 655- 664. DOI: 10.1038/s41401-020-00518-y.
    [26]
    YU R, LIU T, JIN SB, et al. MIEF1/2 function as adaptors to recruit Drp1 to mitochondria and regulate the association of Drp1 with Mff[J]. Sci Rep, 2017, 7( 1): 880. DOI: 10.1038/s41598-017-00853-x.
    [27]
    SOUNDARARAJAN R, HERNÁNDEZ-CUERVO H, STEARNS TM, et al. A-kinase anchor protein 1 deficiency causes mitochondrial dysfunction in mouse model of hyperoxia induced acute lung injury[J]. Front Pharmacol, 2022, 13: 980723. DOI: 10.3389/fphar.2022.980723.
    [28]
    CRIBBS JT, STRACK S. Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death[J]. EMBO Rep, 2007, 8( 10): 939- 944. DOI: 10.1038/sj.embor.7401062.
    [29]
    ADACHI Y, KATO T, YAMADA T, et al. Drp1 tubulates the ER in a GTPase-independent manner[J]. Mol Cell, 2020, 80( 4): 621- 632. e 6. DOI: 10.1016/j.molcel.2020.10.013.
    [30]
    NAVARATNARAJAH T, ANAND R, REICHERT AS, et al. The relevance of mitochondrial morphology for human disease[J]. Int J Biochem Cell Biol, 2021, 134: 105951. DOI: 10.1016/j.biocel.2021.105951.
    [31]
    WANG LX, ISHIHARA T, IBAYASHI Y, et al. Disruption of mitochondrial fission in the liver protects mice from diet-induced obesity and metabolic deterioration[J]. Diabetologia, 2015, 58( 10): 2371- 2380. DOI: 10.1007/s00125-015-3704-7.
    [32]
    GALLOWAY CA, LEE H, BROOKES PS, et al. Decreasing mitochondrial fission alleviates hepatic steatosis in a murine model of nonalcoholic fatty liver disease[J]. Am J Physiol Gastrointest Liver Physiol, 2014, 307( 6): G632- G641. DOI: 10.1152/ajpgi.00182.2014.
    [33]
    HAMMERSCHMIDT P, OSTKOTTE D, NOLTE H, et al. CerS6-derived sphingolipids interact with mff and promote mitochondrial fragmentation in obesity[J]. Cell, 2019, 177( 6): 1536- 1552. e 23. DOI: 10.1016/j.cell.2019.05.008.
    [34]
    XIA WM, VEERAGANDHAM P, CAO Y, et al. Obesity causes mitochondrial fragmentation and dysfunction in white adipocytes due to RalA activation[J]. Nat Metab, 2024, 6( 2): 273- 289. DOI: 10.1038/s42255-024-00978-0.
    [35]
    FRIEDMAN JR, LACKNER LL, WEST M, et al. ER tubules mark sites of mitochondrial division[J]. Science, 2011, 334( 6054): 358- 362. DOI: 10.1126/science.1207385.
    [36]
    BRAVO-SAGUA R, PARRA V, ORTIZ-SANDOVAL C, et al. Caveolin-1 impairs PKA-DRP1-mediated remodelling of ER-mitochondria communication during the early phase of ER stress[J]. Cell Death Differ, 2019, 26( 7): 1195- 1212. DOI: 10.1038/s41418-018-0197-1.
    [37]
    STEFFEN J, NGO J, WANG SP, et al. The mitochondrial fission protein Drp1 in liver is required to mitigate NASH and prevents the activation of the mitochondrial ISR[J]. Mol Metab, 2022, 64: 101566. DOI: 10.1016/j.molmet.2022.101566.
    [38]
    WANG J, YANG Y, SUN F, et al. ALKBH5 attenuates mitochondrial fission and ameliorates liver fibrosis by reducing Drp1 methylation[J]. Pharmacol Res, 2023, 187: 106608. DOI: 10.1016/j.phrs.2022.106608.
    [39]
    HU ZQ, ZHANG HY, WANG YT, et al. Exercise activates Sirt1-mediated Drp1 acetylation and inhibits hepatocyte apoptosis to improve nonalcoholic fatty liver disease[J]. Lipids Health Dis, 2023, 22( 1): 33. DOI: 10.1186/s12944-023-01798-z.
    [40]
    LEMOS V, DE OLIVEIRA RM, NAIA LA, et al. The NAD+-dependent deacetylase SIRT2 attenuates oxidative stress and mitochondrial dysfunction and improves insulin sensitivity in hepatocytes[J]. Hum Mol Genet, 2017, 26( 21): 4105- 4117. DOI: 10.1093/hmg/ddx298.
    [41]
    ZHANG LW, XIE XX, TAO JX, et al. Mystery of bisphenol F-induced nonalcoholic fatty liver disease-like changes: Roles of Drp1-mediated abnormal mitochondrial fission in lipid droplet deposition[J]. Sci Total Environ, 2023, 904: 166831. DOI: 10.1016/j.scitotenv.2023.166831.
    [42]
    QUAN Y, SHOU DW, YANG SQ, et al. Mdivi1 ameliorates mitochondrial dysfunction in non-alcoholic steatohepatitis by inhibiting JNK/MFF signaling[J]. J Gastroenterol Hepatol, 2023, 38( 12): 2215- 2227. DOI: 10.1111/jgh.16372.
    [43]
    ZHONG YJ, LI ZM, JIN RY, et al. Diosgenin ameliorated type II diabetes-associated nonalcoholic fatty liver disease through inhibiting de novo lipogenesis and improving fatty acid oxidation and mitochondrial function in rats[J]. Nutrients, 2022, 14( 23): 4994. DOI: 10.3390/nu14234994.
    [44]
    DU JX, WANG TT, XIAO CY, et al. Pharmacological activation of AMPK prevents Drp1-mediated mitochondrial fission and alleviates hepatic steatosis In vitro[J]. Curr Mol Med, 2024, 24( 12): 1506- 1517. DOI: 10.2174/0115665240275594231229121030.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (96) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return