中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

Influencing factors for the homing ability of mesenchymal stem cells in end-stage liver disease and optimization measures

DOI: 10.12449/JCH250326
Research funding:

Key R & D Projects of Shanxi Province (201903D421056)

More Information
  • Corresponding author: ZHANG Liaoyun, zlysgzy@163.com (ORCID: 0000-0002-7666-7368)
  • Received Date: 2024-06-16
  • Accepted Date: 2024-08-22
  • Published Date: 2025-03-25
  • Mesenchymal stem cells (MSCs) have emerged as a promising cellular therapy for end-stage liver disease (ESLD) due to their robust self-regenerative, paracrine, and immunomodulatory characteristics, providing new directions for the treatment of advanced liver disease. However, the clinical application of MSCs is significantly limited by the fact that only a small number of MSCs can reach the liver due to massive apoptosis or necrosis during the homing process caused by the influence of the complex microenvironment (inflammation, oxidative stress, and hypoxia) of the injured liver and the fact that a substantial proportion of MSCs become trapped in the pulmonary capillaries following intravenous administration with a lack of sufficient homing receptors or adhesion molecules. Various strategies have been developed to optimize the proliferation, migration, and homing abilities of MSCs, including preconditioning, gene modification, and nanoencapsulation technology. This article elaborates on the influencing factors for the homing ability of MSCs, the strategies to optimize their homing in ESLD, and the mechanism of the homing of MSCs, in order to improve cell transplantation efficiency, promote liver repair and regeneration, and pave the way for the application of MSCs in the treatment of ESLD.

     

  • [1]
    YU SX, YU SH, LIU HY, et al. Enhancing mesenchymal stem cell survival and homing capability to improve cell engraftment efficacy for liver diseases[J]. Stem Cell Res Ther, 2023, 14( 1): 235. DOI: 10.1186/s13287-023-03476-4.
    [2]
    MEI RY, WAN Z, YANG C, et al. Advances and clinical challenges of mesenchymal stem cell therapy[J]. Front Immunol, 2024, 15: 1421854. DOI: 10.3389/fimmu.2024.1421854.
    [3]
    FAGOONEE S, SHUKLA SP, DHASMANA A, et al. Routes of stem cell administration[J]. Adv Exp Med Biol, 2022. DOI: 10.1007/5584_2022_710.[ Online ahead of print]
    [4]
    GHUFRAN H, AZAM M, MEHMOOD A, et al. Adipose tissue and umbilical cord tissue: Potential sources of mesenchymal stem cells for liver fibrosis treatment[J]. J Clin Exp Hepatol, 2024, 14( 4): 101364. DOI: 10.1016/j.jceh.2024.101364.
    [5]
    HASS R, KASPER C, BÖHM S, et al. Different populations and sources of human mesenchymal stem cells(MSC): A comparison of adult and neonatal tissue-derived MSC[J]. Cell Commun Signal, 2011, 9: 12. DOI: 10.1186/1478-811X-9-12.
    [6]
    JERVIS M, HUAMAN O, CAHUASCANCO B, et al. Comparative analysis of in vitro proliferative, migratory and pro-angiogenic potentials of bovine fetal mesenchymal stem cells derived from bone marrow and adipose tissue[J]. Vet Res Commun, 2019, 43( 3): 165- 178. DOI: 10.1007/s11259-019-09757-9.
    [7]
    SHI LH, CHEN LL, GAO XZ, et al. Comparison of different sources of mesenchymal stem cells: Focus on inflammatory bowel disease[J]. Inflammopharmacology, 2024, 32( 3): 1721- 1742. DOI: 10.1007/s10787-024-01468-1.
    [8]
    SINEH SEPEHR K, RAZAVI A, HASSAN ZM, et al. Comparative immunomodulatory properties of mesenchymal stem cells derived from human breast tumor and normal breast adipose tissue[J]. Cancer Immunol Immunother, 2020, 69( 9): 1841- 1854. DOI: 10.1007/s00262-020-02567-y.
    [9]
    KABAT M, BOBKOV I, KUMAR S, et al. Trends in mesenchymal stem cell clinical trials 2004-2018: Is efficacy optimal in a narrow dose range?[J]. Stem Cells Transl Med, 2020, 9( 1): 17- 27. DOI: 10.1002/sctm.19-0202.
    [10]
    LI M, ZHANG JG, FANG JM, et al. Pre-administration of human umbilical cord mesenchymal stem cells has better therapeutic efficacy in rats with D-galactosamine-induced acute liver failure[J]. Int Immunopharmacol, 2024, 130: 111672. DOI: 10.1016/j.intimp.2024.111672.
    [11]
    YANG H, CHEN JX, LI J. Isolation, culture, and delivery considerations for the use of mesenchymal stem cells in potential therapies for acute liver failure[J]. Front Immunol, 2023, 14: 1243220. DOI: 10.3389/fimmu.2023.1243220.
    [12]
    YUAN MQ, HU X, YAO LC, et al. Mesenchymal stem cell homing to improve therapeutic efficacy in liver disease[J]. Stem Cell Res Ther, 2022, 13( 1): 179. DOI: 10.1186/s13287-022-02858-4.
    [13]
    OGASAWARA H, INAGAKI A, FATHI I, et al. Preferable transplant site for hepatocyte transplantation in a rat model[J]. Cell Transplant, 2021, 30: 9636897211040012. DOI: 10.1177/09636897211040012.
    [14]
    YUAN LZ, JIANG J, LIU X, et al. HBV infection-induced liver cirrhosis development in dual-humanised mice with human bone mesenchymal stem cell transplantation[J]. Gut, 2019, 68( 11): 2044- 2056. DOI: 10.1136/gutjnl-2018-316091.
    [15]
    OHKI A, SAITO S, FUKUCHI K. Magnetic resonance imaging of umbilical cord stem cells labeled with superparamagnetic iron oxide nanoparticles: Effects of labelling and transplantation parameters[J]. Sci Rep, 2020, 10( 1): 13684. DOI: 10.1038/s41598-020-70291-9.
    [16]
    HERVÁS-SALCEDO R, FERNÁNDEZ-GARCÍA M, HERNANDO-RODRÍGUEZ M, et al. Enhanced anti-inflammatory effects of mesenchymal stromal cells mediated by the transient ectopic expression of CXCR4 and IL10[J]. Stem Cell Res Ther, 2021, 12( 1): 124. DOI: 10.1186/s13287-021-02193-0.
    [17]
    XU RX, NI BB, WANG L, et al. CCR2-overexpressing mesenchymal stem cells targeting damaged liver enhance recovery of acute liver failure[J]. Stem Cell Res Ther, 2022, 13( 1): 55. DOI: 10.1186/s13287-022-02729-y.
    [18]
    LI Y, DONG JT, ZHOU Y, et al. Therapeutic effects of CXCL9-overexpressing human umbilical cord mesenchymal stem cells on liver fibrosis in rats[J]. Biochem Biophys Res Commun, 2021, 584: 87- 94. DOI: 10.1016/j.bbrc.2021.10.078.
    [19]
    WANG Q, LI YW, YUAN H, et al. Hypoxia preconditioning of human amniotic mesenchymal stem cells enhances proliferation and migration and promotes their homing via the HGF/C-MET signaling axis to augment the repair of acute liver failure[J]. Tissue Cell, 2024, 87: 102326. DOI: 10.1016/j.tice.2024.102326.
    [20]
    ELZAINY A, SADIK A EL, ALTOWAYAN WM. Comparison between the regenerative and therapeutic impacts of bone marrow mesenchymal stem cells and adipose mesenchymal stem cells pre-treated with melatonin on liver fibrosis[J]. Biomolecules, 2024, 14( 3): 297. DOI: 10.3390/biom14030297.
    [21]
    BAIG MT, GHUFRAN H, MEHMOOD A, et al. Vitamin E pretreated Wharton’s jelly-derived mesenchymal stem cells attenuate CCl4-induced hepatocyte injury in vitro and liver fibrosis in vivo[J]. Biochem Pharmacol, 2021, 186: 114480. DOI: 10.1016/j.bcp.2021.114480.
    [22]
    NIE H, AN FM, MEI J, et al. IL-1β pretreatment improves the efficacy of mesenchymal stem cells on acute liver failure by enhancing CXCR4 expression[J]. Stem Cells Int, 2020, 2020: 1498315. DOI: 10.1155/2020/1498315.
    [23]
    ZHENG J, LI H, HE LY, et al. Preconditioning of umbilical cord-derived mesenchymal stem cells by rapamycin increases cell migration and ameliorates liver ischaemia/reperfusion injury in mice via the CXCR4/CXCL12 axis[J]. Cell Prolif, 2019, 52( 2): e12546. DOI: 10.1111/cpr.12546.
    [24]
    XU HM, HUANG YZ, ZHANG FS, et al. Ultrasonic microbubbles promote mesenchymal stem cell homing to the fibrotic liver via upregulation of CXCR4 expression[J]. Cell Div, 2024, 19( 1): 7. DOI: 10.1186/s13008-023-00104-8.
    [25]
    DING F, LIU YT, LI J, et al. TC14012 enhances the anti-fibrosis effects of UC-MSCs on the liver by reducing collagen accumulation and ameliorating inflammation[J]. Stem Cell Res Ther, 2024, 15( 1): 44. DOI: 10.1186/s13287-024-03648-w.
    [26]
    LE B, CRESSMAN A, MORALES D, et al. First clinical experiences using preconditioning approaches to improve MSC-based therapies[J]. Curr Stem Cell Rep, 2024, 10( 1): 1- 7. DOI: 10.1007/s40778-023-00232-5.
    [27]
    NASIR GA, MOHSIN S, KHAN M, et al. Mesenchymal stem cells and Interleukin-6 attenuate liver fibrosis in mice[J]. J Transl Med, 2013, 11: 78. DOI: 10.1186/1479-5876-11-78.
    [28]
    XIANG W, YIN GL, LIU HM, et al. Arctium lappa L. polysaccharides enhanced the therapeutic effects of nasal ectomesenchymal stem cells against liver fibrosis by inhibiting the Wnt/β-catenin pathway[J]. Int J Biol Macromol, 2024, 261( Pt 1): 129670. DOI: 10.1016/j.ijbiomac.2024.129670.
    [29]
    TAKAYAMA Y, KUSAMORI K, KATSURADA Y, et al. Efficient delivery of mesenchymal stem/stromal cells to injured liver by surface PEGylation[J]. Stem Cell Res Ther, 2023, 14( 1): 216. DOI: 10.1186/s13287-023-03446-w.
    [30]
    QUE HY, MAI E, HU YT, et al. Multilineage-differentiating stress-enduring cells: A powerful tool for tissue damage repair[J]. Front Cell Dev Biol, 2024, 12: 1380785. DOI: 10.3389/fcell.2024.1380785.
    [31]
    KATAGIRI H, KUSHIDA Y, NOJIMA M, et al. A distinct subpopulation of bone marrow mesenchymal stem cells, muse cells, directly commit to the replacement of liver components[J]. Am J Transplant, 2016, 16( 2): 468- 483. DOI: 10.1111/ajt.13537.
    [32]
    ISEKI M, KUSHIDA Y, WAKAO S, et al. Muse cells, nontumorigenic pluripotent-like stem cells, have liver regeneration capacity through specific homing and cell replacement in a mouse model of liver fibrosis[J]. Cell Transplant, 2017, 26( 5): 821- 840. DOI: 10.3727/096368916X693662.
    [33]
    ISEKI M, MIZUMA M, WAKAO S, et al. The evaluation of the safety and efficacy of intravenously administered allogeneic multilineage-differentiating stress-enduring cells in a swine hepatectomy model[J]. Surg Today, 2021, 51( 4): 634- 650. DOI: 10.1007/s00595-020-02117-0.
    [34]
    LI H, WEI JH, LI MZ, et al. Biological characteristics of Muse cells derived from MenSCs and their application in acute liver injury and intracerebral hemorrhage diseases[J]. Regen Ther, 2024, 27: 48- 62. DOI: 10.1016/j.reth.2024.03.003.
    [35]
    CHENG WY, YANG MY, YEH CA, et al. Therapeutic applications of mesenchymal stem cell loaded with gold nanoparticles for regenerative medicine[J]. Pharmaceutics, 2023, 15( 5): 1385. DOI: 10.3390/pharmaceutics15051385.
    [36]
    HUANG XL, ZHANG F, WANG Y, et al. Design considerations of iron-based nanoclusters for noninvasive tracking of mesenchymal stem cell homing[J]. ACS Nano, 2014, 8( 5): 4403- 4414. DOI: 10.1021/nn4062726.
    [37]
    VITALE E, ROSSIN D, PERVEEN S, et al. Silica nanoparticle internalization improves chemotactic behaviour of human mesenchymal stem cells acting on the SDF1α/CXCR4 axis[J]. Biomedicines, 2022, 10( 2): 336. DOI: 10.3390/biomedicines10020336.
    [38]
    ZHANG DX, FU LW, YANG YT, et al. Tetrahedral framework nucleic acids improve the effectiveness of adipose-derived mesenchymal stem cells in the repair of acute liver failure[J]. Mater Today Nano, 2024, 25: 100454. DOI: 10.1016/j.mtnano.2024.100454.
    [39]
    FOROUTAN T, KASSAEE MZ, SALARI M, et al. Magnetic Fe3 O4@graphene oxide improves the therapeutic effects of embryonic stem cells on acute liver damage[J]. Cell Prolif, 2021, 54( 11): e13126. DOI: 10.1111/cpr.13126.
    [40]
    SHIN MJ, PARK JY, LEE DH, et al. Stem cell mimicking nanoencapsulation for targeting arthritis[J]. Int J Nanomedicine, 2021, 16: 8485- 8507. DOI: 10.2147/IJN.S334298.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(3)

    Article Metrics

    Article views (92) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return