[1] |
FERSTL P, TREBICKA J. Acute decompensation and acute-on-chronic liver failure[J]. Clin Liver Dis, 2021, 25( 2): 419- 430. DOI: 10.1016/j.cld.2021.01.009.
|
[2] |
D’AMICO G, BERNARDI M, ANGELI P. Towards a new definition of decompensated cirrhosis[J]. J Hepatol, 2022, 76( 1): 202- 207. DOI: 10.1016/j.jhep.2021.06.018.
|
[3] |
SOLÉ C, GUILLY S, SILVA K DA, et al. Alterations in gut microbiome in cirrhosis as assessed by quantitative metagenomics: Relationship with acute-on-chronic liver failure and prognosis[J]. Gastroenterology, 2021, 160( 1): 206- 218. e 13. DOI: 10.1053/j.gastro.2020.08.054.
|
[4] |
LÓPEZ-VICARIO C, CHECA A, URDANGARIN A, et al. Targeted lipidomics reveals extensive changes in circulating lipid mediators in patients with acutely decompensated cirrhosis[J]. J Hepatol, 2020, 73( 4): 817- 828. DOI: 10.1016/j.jhep.2020.03.046.
|
[5] |
WANG FC, LI ZY, ZHANG WJ, et al. The significance of gut microbiota in acute-on-chronic liver failure[J]. J Clin Hepatol, 2022, 38( 7): 1667- 1670. DOI: 10.3969/j.issn.1001-5256.2022.07.040.
王富春, 李子怡, 张万洁, 等. 肠道菌群在慢加急性肝衰竭中的意义[J]. 临床肝胆病杂志, 2022, 38( 7): 1667- 1670. DOI: 10.3969/j.issn.1001-5256.2022.07.040.
|
[6] |
WOODHOUSE CA, PATEL VC, SINGANAYAGAM A, et al. Review article: The gut microbiome as a therapeutic target in the pathogenesis and treatment of chronic liver disease[J]. Aliment Pharmacol Ther, 2018, 47( 2): 192- 202. DOI: 10.1111/apt.14397.
|
[7] |
KORPELA K, COSTEA P, COELHO LP, et al. Selective maternal seeding and environment shape the human gut microbiome[J]. Genome Res, 2018, 28( 4): 561- 568. DOI: 10.1101/gr.233940.117.
|
[8] |
WASTYK HC, FRAGIADAKIS GK, PERELMAN D, et al. Gut-microbiota-targeted diets modulate human immune status[J]. Cell, 2021, 184( 16): 4137- 4153. e 14. DOI: 10.1016/j.cell.2021.06.019.
|
[9] |
LI ZZ, HUANG XW, ZHANG ZP, et al. Research progress in role of gut-liver axis in occurrence and development of atherosclerosis[J]. J Jilin Univ Med Ed, 2023, 49( 6): 1669- 1676. DOI: 10.13481/j.1671-587X.20230636.
李朝政, 黄晓巍, 张泽鹏, 等. 肠-肝轴在动脉粥样硬化发生发展中作用的研究进展[J]. 吉林大学学报(医学版), 2023, 49( 6): 1669- 1676. DOI: 10.13481/j.1671-587X.20230636.
|
[10] |
TRIPATHI A, DEBELIUS J, BRENNER DA, et al. The gut-liver axis and the intersection with the microbiome[J]. Nat Rev Gastroenterol Hepatol, 2018, 15( 7): 397- 411. DOI: 10.1038/s41575-018-0011-z.
|
[11] |
CLÀRIA J, STAUBER RE, COENRAAD MJ, et al. Systemic inflammation in decompensated cirrhosis: Characterization and role in acute-on-chronic liver failure[J]. Hepatology, 2016, 64( 4): 1249- 1264. DOI: 10.1002/hep.28740.
|
[12] |
TREBICKA J, AMOROS A, PITARCH C, et al. Addressing profiles of systemic inflammation across the different clinical phenotypes of acutely decompensated cirrhosis[J]. Front Immunol, 2019, 10: 476. DOI: 10.3389/fimmu.2019.00476.
|
[13] |
WANG K, ZHANG Z, MO ZS, et al. Gut microbiota as prognosis markers for patients with HBV-related acute-on-chronic liver failure[J]. Gut Microbes, 2021, 13( 1): 1- 15. DOI: 10.1080/19490976.2021.1921925.
|
[14] |
BAJAJ JS, VARGAS HE, REDDY KR, et al. Association between intestinal microbiota collected at hospital admission and outcomes of patients with cirrhosis[J]. Clin Gastroenterol Hepatol, 2019, 17( 4): 756- 765. e 3. DOI: 10.1016/j.cgh.2018.07.022.
|
[15] |
TREBICKA J, MACNAUGHTAN J, SCHNABL B, et al. The microbiota in cirrhosis and its role in hepatic decompensation[J]. J Hepatol, 2021, 75( Suppl 1): S67- S68. DOI: 10.1016/j.jhep.2020.11.013.
|
[16] |
BAJAJ JS, REDDY KR, O’LEARY JG, et al. Serum levels of metabolites produced by intestinal microbes and lipid moieties independently associated with acute-on-chronic liver failure and death in patients with cirrhosis[J]. Gastroenterology, 2020, 159( 5): 1715- 1730. e 12. DOI: 10.1053/j.gastro.2020.07.019.
|
[17] |
DALILE B, van OUDENHOVE L, VERVLIET B, et al. The role of short-chain fatty acids in microbiota-gut-brain communication[J]. Nat Rev Gastroenterol Hepatol, 2019, 16( 8): 461- 478. DOI: 10.1038/s41575-019-0157-3.
|
[18] |
CANI PD, JORDAN BF. Gut microbiota-mediated inflammation in obesity: A link with gastrointestinal cancer[J]. Nat Rev Gastroenterol Hepatol, 2018, 15: 671- 682. DOI: 10.1038/s41575-018-0025-6.
|
[19] |
PARK JH, EBERL G. Type 3 regulatory T cells at the interface of symbiosis[J]. J Microbiol, 2018, 56( 3): 163- 171. DOI: 10.1007/s12275-018-7565-x.
|
[20] |
LITVAK Y, MON KKZ, NGUYEN H, et al. Commensal Enterobacteriaceae protect against Salmonella colonization through oxygen competition[J]. Cell Host Microbe, 2019, 25( 1): 128- 139. e 5. DOI: 10.1016/j.chom.2018.12.003.
|
[21] |
BRONNER DN, FABER F, OLSAN EE, et al. Genetic ablation of butyrate utilization attenuates gastrointestinal Salmonella disease[J]. Cell Host Microbe, 2018, 23( 2): 266- 273. e 4. DOI: 10.1016/j.chom.2018.01.004.
|
[22] |
CHANG PV, HAO LM, OFFERMANNS S, et al. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition[J]. Proc Natl Acad Sci USA, 2014, 111( 6): 2247- 2252. DOI: 10.1073/pnas.1322269111.
|
[23] |
de VOS WM, TILG H, VAN HUL M, et al. Gut microbiome and health: Mechanistic insights[J]. Gut, 2022, 71( 5): 1020- 1032. DOI: 10.1136/gutjnl-2021-326789.
|
[24] |
AGUS A, PLANCHAIS J, SOKOL H. Gut microbiota regulation of tryptophan metabolism in health and disease[J]. Cell Host Microbe, 2018, 23( 6): 716- 724. DOI: 10.1016/j.chom.2018.05.003.
|
[25] |
MUNN DH, MELLOR AL. Indoleamine 2, 3 dioxygenase and metabolic control of immune responses[J]. Trends Immunol, 2013, 34( 3): 137- 143. DOI: 10.1016/j.it.2012.10.001.
|
[26] |
CERVENKA I, AGUDELO LZ, RUAS JL. Kynurenines: Tryptophan’s metabolites in exercise, inflammation, and mental health[J]. Science, 2017, 357( 6349): eaaf9794. DOI: 10.1126/science.aaf9794.
|
[27] |
CORREIA AS, VALE N. Tryptophan metabolism in depression: A narrative review with a focus on serotonin and kynurenine pathways[J]. Int J Mol Sci, 2022, 23( 15): 8493. DOI: 10.3390/ijms23158493.
|
[28] |
CLÀRIA J, MOREAU R, FENAILLE F, et al. Orchestration of tryptophan-kynurenine pathway, acute decompensation, and acute-on-chronic liver failure in cirrhosis[J]. Hepatology, 2019, 69( 4): 1686- 1701. DOI: 10.1002/hep.30363.
|
[29] |
RAMOS-MOLINA B, QUEIPO-ORTUÑO MI, LAMBERTOS A, et al. Dietary and gut microbiota polyamines in obesity- and age-related diseases[J]. Front Nutr, 2019, 6: 24. DOI: 10.3389/fnut.2019.00024.
|
[30] |
ZACCHERINI G, AGUILAR F, CARACENI P, et al. Assessing the role of amino acids in systemic inflammation and organ failure in patients with ACLF[J]. J Hepatol, 2021, 74( 5): 1117- 1131. DOI: 10.1016/j.jhep.2020.11.035.
|
[31] |
JOHNSON CH, SPILKER ME, GOETZ L, et al. Metabolite and microbiome interplay in cancer immunotherapy[J]. Cancer Res, 2016, 76( 21): 6146- 6152. DOI: 10.1158/0008-5472.CAN-16-0309.
|
[32] |
LEVY M, THAISS CA, ZEEVI D, et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling[J]. Cell, 2015, 163( 6): 1428- 1443. DOI: 10.1016/j.cell.2015.10.048.
|
[33] |
FUCHS CD, TRAUNER M. Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology[J]. Nat Rev Gastroenterol Hepatol, 2022, 19( 7): 432- 450. DOI: 10.1038/s41575-021-00566-7.
|
[34] |
PERINO A, DEMAGNY H, VELAZQUEZ-VILLEGAS L, et al. Molecular physiology of bile acid signaling in health, disease, and aging[J]. Physiol Rev, 2021, 101( 2): 683- 731. DOI: 10.1152/physrev.00049.2019.
|
[35] |
LI F, JIANG CT, KRAUSZ KW, et al. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity[J]. Nat Commun, 2013, 4: 2384. DOI: 10.1038/ncomms3384.
|
[36] |
FRIEDMAN ES, LI Y, SHEN TC D, et al. FXR-dependent modulation of the human small intestinal microbiome by the bile acid derivative obeticholic acid[J]. Gastroenterology, 2018, 155( 6): 1741- 1752.e5. DOI: 10.1053/j.gastro.2018.08.022.
|
[37] |
SCHWABL P, HAMBRUCH E, SEELAND BA, et al. The FXR agonist PX20606 ameliorates portal hypertension by targeting vascular remodelling and sinusoidal dysfunction[J]. J Hepatol, 2017, 66( 4): 724- 733. DOI: 10.1016/j.jhep.2016.12.005.
|
[38] |
ZHAO LN, YU T, LAN SY, et al. Probiotics can improve the clinical outcomes of hepatic encephalopathy: An update meta-analysis[J]. Clin Res Hepatol Gastroenterol, 2015, 39( 6): 674- 682. DOI: 10.1016/j.clinre.2015.03.008.
|
[39] |
WANG YZ, XIE JM, LI YX, et al. Probiotic Lactobacillus casei Zhang reduces pro-inflammatory cytokine production and hepatic inflammation in a rat model of acute liver failure[J]. Eur J Nutr, 2016, 55( 2): 821- 831. DOI: 10.1007/s00394-015-0904-3.
|
[40] |
WANG QQ, LV LX, JIANG HY, et al. Lactobacillus helveticus R0052 alleviates liver injury by modulating gut microbiome and metabolome in D-galactosamine-treated rats[J]. Appl Microbiol Biotechnol, 2019, 103( 23-24): 9673- 9686. DOI: 10.1007/s00253-019-10211-8.
|
[41] |
ZHUGE AX, LI B, YUAN Y, et al. Lactobacillus salivarius LI01 encapsulated in alginate-pectin microgels ameliorates D-galactosamine-induced acute liver injury in rats[J]. Appl Microbiol Biotechnol, 2020, 104( 17): 7437- 7455. DOI: 10.1007/s00253-020-10749-y.
|
[42] |
SANDERS ME, MERENSTEIN DJ, REID G, et al. Probiotics and prebiotics in intestinal health and disease: From biology to the clinic[J]. Nat Rev Gastroenterol Hepatol, 2019, 16( 10): 605- 616. DOI: 10.1038/s41575-019-0173-3.
|
[43] |
YU JH, ZHANG WG, ZHANG RG, et al. Lactulose accelerates liver regeneration in rats by inducing hydrogen[J]. J Surg Res, 2015, 195( 1): 128- 135. DOI: 10.1016/j.jss.2015.01.034.
|
[44] |
LIU Q, DUAN ZP, HA DK, et al. Synbiotic modulation of gut flora: Effect on minimal hepatic encephalopathy in patients with cirrhosis[J]. Hepatology, 2004, 39( 5): 1441- 1449. DOI: 10.1002/hep.20194.
|
[45] |
ŻÓŁKIEWICZ J, MARZEC A, RUSZCZYŃSKI M, et al. Postbiotics-a step beyond pre- and probiotics[J]. Nutrients, 2020, 12( 8): 2189. DOI: 10.3390/nu12082189.
|
[46] |
SONG W, WEN RX, LIU TQ, et al. Oat-based postbiotics ameliorate high-sucrose induced liver injury and colitis susceptibility by modulating fatty acids metabolism and gut microbiota[J]. J Nutr Biochem, 2024, 125: 109553. DOI: 10.1016/j.jnutbio.2023.109553.
|
[47] |
YE W, CHEN Z, HE Z, et al. Lactobacillus plantarum-derived postbiotics ameliorate acute alcohol-induced liver injury by protecting cells from oxidative damage, improving lipid metabolism, and regulating intestinal microbiota[J]. Nutrients, 2023, 15( 4): 845. DOI: 10.3390/nu15040845.
|
[48] |
YANG CJ, CHANG HC, SUNG PC, et al. Oral fecal transplantation enriches Lachnospiraceae and butyrate to mitigate acute liver injury[J]. Cell Rep, 2024, 43( 1): 113591. DOI: 10.1016/j.celrep.2023.113591.
|
[49] |
FAN LD, LIU YM, CHENG ML. Probiotics enhance the efficacy of fecal microbiota transplantation in severe acute liver injury[J]. Chin J Hepatol, 2020, 28( 4): 345- 350. DOI: 10.3760/cma.j.cn501113-20190823-00315.
范琳达, 刘咏梅, 程明亮. 益生菌增强急性严重肝损伤粪菌移植效果[J]. 中华肝脏病杂志, 2020, 28( 4): 345- 350. DOI: 10.3760/cma.j.cn501113-20190823-00315.
|
[50] |
AHMAD J, KUMAR M, SARIN SK, et al. PS-163-faecal microbiota transplantation with tenofovir is superior to tenofovir alone in improving clinical outcomes in acute-on-chronic liver failure due to hepatitis B: An open label randomized controlled trial(NCT02689245)[J]. J Hepatol, 2019, 70( 1): e102. DOI: 10.1016/S0618-8278(19)30181-1.
|
[51] |
SHARMA A, ROY A, PREMKUMAR M, et al. Fecal microbiota transplantation in alcohol-associated acute-on-chronic liver failure: an open-label clinical trial[J]. Hepatol Int, 2022, 16( 2): 433- 446. DOI: 10.1007/s12072-022-10312-z.
|