| [1] |
VALLE JW, KELLEY RK, NERVI B, et al. Biliary tract cancer[J]. Lancet, 2021, 397( 10272): 428- 444. DOI: 10.1016/s0140-6736(21)00153-7.
|
| [2] |
BANALES JM, MARIN JJG, LAMARCA A, et al. Cholangiocarcinoma 2020: The next horizon in mechanisms and management[J]. Nat Rev Gastroenterol Hepatol, 2020, 17( 9): 557- 588. DOI: 10.1038/s41575-020-0310-z.
|
| [3] |
HAN BF, ZHENG RS, ZENG HM, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4( 1): 47- 53. DOI: 10.1016/j.jncc.2024.01.006.
|
| [4] |
LEE YT, WANG JJ, LUU M, et al. Comparison of clinical features and outcomes between intrahepatic cholangiocarcinoma and hepatocellular carcinoma in the United States[J]. Hepatology, 2021, 74( 5): 2622- 2632. DOI: 10.1002/hep.32007.
|
| [5] |
OH DY, RUTH HE A, QIN SK, et al. Durvalumab plus gemcitabine and cisplatin in advanced biliary tract cancer[J]. NEJM Evid, 2022, 1( 8): EVIDoa2200015. DOI: 10.1056/evidoa2200015.
|
| [6] |
KELLEY RK, UENO M, YOO C, et al. Pembrolizumab in combination with gemcitabine and cisplatin compared with gemcitabine and cisplatin alone for patients with advanced biliary tract cancer(KEYNOTE-966): A randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet, 2023, 401( 10391): 1853- 1865. DOI: 10.1016/S0140-6736(23)00727-4.
|
| [7] |
LIU CL, WANG X, LIU ED, et al. Deciphering cholangiocarcinoma heterogeneity and specific progenitor cell niche of extrahepatic cholangiocarcinoma at single-cell resolution[J]. J Hematol Oncol, 2025, 18( 1): 66. DOI: 10.1186/s13045-025-01716-z.
|
| [8] |
JOB S, RAPOUD D, DOS SANTOS A, et al. Identification of four immune subtypes characterized by distinct composition and functions of tumor microenvironment in intrahepatic cholangiocarcinoma[J]. Hepatology, 2020, 72( 3): 965- 981. DOI: 10.1002/hep.31092.
|
| [9] |
ZHOU T, WU YH, LI S, et al. Multi-omic analysis of gallbladder cancer identifies distinct tumor microenvironments associated with disease progression[J]. Nat Genet, 2025, 57( 8): 1935- 1949. DOI: 10.1038/s41588-025-02236-9.
|
| [10] |
WANG X, LIU CL, CHEN JN, et al. Single-cell dissection of remodeled inflammatory ecosystem in primary and metastatic gallbladder carcinoma[J]. Cell Discov, 2022, 8: 101. DOI: 10.1038/s41421-022-00445-8.
|
| [11] |
SHI XB, LI ZX, YAO RQ, et al. Single-cell atlas of diverse immune populations in the advanced biliary tract cancer microenvironment[J]. NPJ Precis Onc, 2022, 6: 58. DOI: 10.1038/s41698-022-00300-9.
|
| [12] |
AFFO S, YU LX, SCHWABE RF. The role of cancer-associated fibroblasts and fibrosis in liver cancer[J]. Annu Rev Pathol Mech Dis, 2017, 12: 153- 186. DOI: 10.1146/annurev-pathol-052016-100322.
|
| [13] |
LOEUILLARD E, YANG JC, BUCKARMA E, et al. Targeting tumor-associated macrophages and granulocytic myeloid-derived suppressor cells augments PD-1 blockade in cholangiocarcinoma[J]. J Clin Investig, 2020, 130( 10): 5380- 5396. DOI: 10.1172/jci137110.
|
| [14] |
CHEN J, AMOOZGAR Z, LIU X, et al. Reprogramming the intrahepatic cholangiocarcinoma immune microenvironment by chemotherapy and CTLA-4 blockade enhances anti-PD-1 therapy[J]. Cancer Immunol Res, 2024, 12( 4): 400- 412. DOI: 10.1158/2326-6066.CIR-23-0486.
|
| [15] |
HE X, PENG YR, HE G, et al. Increased co-expression of PD1 and TIM3 is associated with poor prognosis and immune microenvironment heterogeneity in gallbladder cancer[J]. J Transl Med, 2023, 21( 1): 717. DOI: 10.1186/s12967-023-04589-3.
|
| [16] |
CAMPO-LE-BRUN I, GRAPINET E, AURILLAC V, et al. Real-world efficacy of immune checkpoint inhibitors in microsatellite unstable/mismatch repair-deficient biliary tract cancer: An AGEO study[J]. Eur J Cancer, 2025, 227: 115670. DOI: 10.1016/j.ejca.2025.115670.
|
| [17] |
MARABELLE A, LE DT, ASCIERTO PA, et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: Results from the phase II KEYNOTE-158 study[J]. J Clin Oncol, 2020, 38( 1): 1- 10. DOI: 10.1200/jco.19.02105.
|
| [18] |
LEMERY S, KEEGAN P, PAZDUR R. First FDA approval agnostic of cancer site: When a biomarker defines the indication[J]. N Engl J Med, 2017, 377( 15): 1409- 1412. DOI: 10.1056/nejmp1709968.
|
| [19] |
LIN JZ, CAO YH, YANG X, et al. Mutational spectrum and precision oncology for biliary tract carcinoma[J]. Theranostics, 2021, 11( 10): 4585- 4598. DOI: 10.7150/thno.56539.
|
| [20] |
LI JJ, WEI Q, WU XY, et al. Integrative clinical and molecular analysis of advanced biliary tract cancers on immune checkpoint blockade reveals potential markers of response[J]. Clin Transl Med, 2020, 10( 4): e118. DOI: 10.1002/ctm2.118.
|
| [21] |
OTT PA, BANG YJ, PIHA-PAUL SA, et al. T-cell-inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028[J]. J Clin Oncol, 2019, 37( 4): 318- 327. DOI: 10.1200/jco.2018.78.2276.
|
| [22] |
VOGEL A, BRIDGEWATER J, EDELINE J, et al. Biliary tract cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up[J]. Ann Oncol, 2023, 34( 2): 127- 140. DOI: 10.1016/j.annonc.2022.10.506.
|
| [23] |
YANG X, LIAN BF, ZHANG N, et al. Genomic characterization and immunotherapy for microsatellite instability-high in cholangiocarcinoma[J]. BMC Med, 2024, 22( 1): 42. DOI: 10.1186/s12916-024-03257-7.
|
| [24] |
GOODMAN AM, SOKOL ES, FRAMPTON GM, et al. Microsatellite-stable tumors with high mutational burden benefit from immunotherapy[J]. Cancer Immunol Res, 2019, 7( 10): 1570- 1573. DOI: 10.1158/2326-6066.cir-19-0149.
|
| [25] |
PIHA-PAUL SA, OH DY, UENO M, et al. Efficacy and safety of pembrolizumab for the treatment of advanced biliary cancer: Results from the KEYNOTE-158 and KEYNOTE-028 studies[J]. Int J Cancer, 2020, 147( 8): 2190- 2198. DOI: 10.1002/ijc.33013.
|
| [26] |
KIM RD, CHUNG V, ALESE OB, et al. A phase 2 multi-institutional study of nivolumab for patients with advanced refractory biliary tract cancer[J]. JAMA Oncol, 2020, 6( 6): 888. DOI: 10.1001/jamaoncol.2020.0930.
|
| [27] |
FENG KC, LIU Y, ZHAO YT, et al. Efficacy and biomarker analysis of nivolumab plus gemcitabine and cisplatin in patients with unresectable or metastatic biliary tract cancers: Results from a phase II study[J]. J Immunother Cancer, 2020, 8( 1): e000367. DOI: 10.1136/jitc-2019-000367.
|
| [28] |
ZENG TM, YANG G, LOU C, et al. Clinical and biomarker analyses of sintilimab plus gemcitabine and cisplatin as first-line treatment for patients with advanced biliary tract cancer[J]. Nat Commun, 2023, 14: 1340. DOI: 10.1038/s41467-023-37030-w.
|
| [29] |
LIN JZ, YANG X, LONG JY, et al. Pembrolizumab combined with lenvatinib as non-first-line therapy in patients with refractory biliary tract carcinoma[J]. Hepatobiliary Surg Nutr, 2020, 9( 4): 414- 424. DOI: 10.21037/hbsn-20-338.
|
| [30] |
COUSIN S, CANTAREL C, GUEGAN JP, et al. Regorafenib–avelumab combination in patients with biliary tract cancer(REGOMUNE): A single-arm, open-label, phase II trial[J]. Eur J Cancer, 2022, 162: 161- 169. DOI: 10.1016/j.ejca.2021.11.012.
|
| [31] |
YARCHOAN M, COPE L, RUGGIERI AN, et al. Multicenter randomized phase II trial of atezolizumab with or without cobimetinib in biliary tract cancers[J]. J Clin Investig, 2021, 131( 24): e152670. DOI: 10.1172/jci152670.
|
| [32] |
KLEIN O, KEE D, NAGRIAL A, et al. Evaluation of combination nivolumab and ipilimumab immunotherapy in patients with advanced biliary tract cancers: Subgroup analysis of a phase 2 nonrandomized clinical trial[J]. JAMA Oncol, 2020, 6( 9): 1405. DOI: 10.1001/jamaoncol.2020.2814.
|
| [33] |
XIE CQ, DUFFY AG, MABRY-HRONES D, et al. Tremelimumab in combination with microwave ablation in patients with refractory biliary tract cancer[J]. Hepatology, 2019, 69( 5): 2048- 2060. DOI: 10.1002/hep.30482.
|
| [34] |
SHI GM, HUANG XY, MA L, et al. First-line tislelizumab and ociperlimab combined with gemcitabine and cisplatin in advanced biliary tract cancer(ZSAB-TOP): A multicenter, single-arm, phase 2 study[J]. Sig Transduct Target Ther, 2025, 10: 260. DOI: 10.1038/s41392-025-02356-y.
|
| [35] |
ARUGA A, TAKESHITA N, KOTERA Y, et al. Phase I clinical trial of multiple-peptide vaccination for patients with advanced biliary tract cancer[J]. J Transl Med, 2014, 12( 1): 61. DOI: 10.1186/1479-5876-12-61.
|
| [36] |
SHIMIZU K, KOTERA Y, ARUGA A, et al. Clinical utilization of postoperative dendritic cell vaccine plus activated T-cell transfer in patients with intrahepatic cholangiocarcinoma[J]. J Hepato Biliary Pancreat Sci, 2012, 19( 2): 171- 178. DOI: 10.1007/s00534-011-0437-y.
|
| [37] |
GUO Y, FENG K, LIU Y, et al. Phase I study of chimeric antigen receptor-modified T cells in patients with EGFR-positive advanced biliary tract cancers[J]. Clin Cancer Res, 2018, 24( 6): 1277- 1286.
|
| [38] |
FENG KC, LIU Y, GUO YL, et al. Phase I study of chimeric antigen receptor modified T cells in treating HER2-positive advanced biliary tract cancers and pancreatic cancers[J]. Protein Cell, 2018, 9( 10): 838- 847. DOI: 10.1007/s13238-017-0440-4.
|
| [39] |
OH DY, HE AR, BOUATTOUR M, et al. Durvalumab or placebo plus gemcitabine and cisplatin in participants with advanced biliary tract cancer(TOPAZ-1): Updated overall survival from a randomised phase 3 study[J]. Lancet Gastroenterol Hepatol, 2024, 9( 8): 694- 704. DOI: 10.1016/s2468-1253(24)00095-5.
|
| [40] |
HANAHAN D, WEINBERG RA. The hallmarks of cancer[J]. Cell, 2000, 100( 1): 57- 70. DOI: 10.1016/s0092-8674(00)81683-9.
|
| [41] |
ZHU XD, TANG ZY, SUN HC. Targeting angiogenesis for liver cancer: Past, present, and future[J]. Genes Dis, 2020, 7( 3): 328- 335. DOI: 10.1016/j.gendis.2020.03.010.
|
| [42] |
ALLEN E, JABOUILLE A, RIVERA LB, et al. Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation[J]. Sci Transl Med, 2017, 9( 385): eaak9679. DOI: 10.1126/scitranslmed.aak9679.
|
| [43] |
KREIDIEH M, ZEIDAN YH, SHAMSEDDINE A. The combination of stereotactic body radiation therapy and immunotherapy in primary liver tumors[J]. J Oncol, 2019, 2019: 4304817. DOI: 10.1155/2019/4304817.
|
| [44] |
MORSE MA, GWIN WR, MITCHELL DA. Vaccine therapies for cancer: Then and now[J]. Target Oncol, 2021, 16( 2): 121- 152. DOI: 10.1007/s11523-020-00788-w.
|
| [45] |
TANG TY, HUANG X, ZHANG G, et al. mRNA vaccine development for cholangiocarcinoma: A precise pipeline[J]. Mil Med Res, 2022, 9( 1): 40. DOI: 10.1186/s40779-022-00399-8.
|
| [46] |
PANDEY A, STAWISKI EW, DURINCK S, et al. Integrated genomic analysis reveals mutated ELF3 as a potential gallbladder cancer vaccine candidate[J]. Nat Commun, 2020, 11: 4225. DOI: 10.1038/s41467-020-17880-4.
|
| [47] |
PAN K, FARRUKH H, CHITTEPU VCSR, et al. CAR race to cancer immunotherapy: From CAR T, CAR NK to CAR macrophage therapy[J]. J Exp Clin Cancer Res, 2022, 41( 1): 119. DOI: 10.1186/s13046-022-02327-z.
|
| [48] |
TRAN E, TURCOTTE S, GROS A, et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer[J]. Science, 2014, 344( 6184): 641- 645. DOI: 10.1126/science.1251102.
|
| [49] |
SUPIMON K, SANGSUWANNUKUL T, SUJJITJOON J, et al. Anti-mucin 1 chimeric antigen receptor T cells for adoptive T cell therapy of cholangiocarcinoma[J]. Sci Rep, 2021, 11: 6276. DOI: 10.1038/s41598-021-85747-9.
|
| [50] |
SANGSUWANNUKUL T, SUPIMON K, SUJJITJOON J, et al. Anti-tumour effect of the fourth-generation chimeric antigen receptor T cells targeting CD133 against cholangiocarcinoma cells[J]. Int Immunopharmacol, 2020, 89: 107069. DOI: 10.1016/j.intimp.2020.107069.
|