中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 41 Issue 12
Dec.  2025
Turn off MathJax
Article Contents

Activation of the cyclic guanosine monophosphate-adenosine monophosphate adenosine synthetase-stimulator of interferon genes signaling pathway regulates the cytotoxicity of γδT cells against hepatoma cells

DOI: 10.12449/JCH251219
Research funding:

Open Research Fund of the Key Laboratory of Prevention and Treatment of High Incidence of Central Asia,NHC (National Health Commission) (KF202203);

Guided Science and Technology Plan Project of XPCC (Xinjiang Production and Construction Corps) (2023ZD023);

Hospital-Level Science and Technology Plan Project (BS202203)

More Information
  • Corresponding author: LI Jiang, jiangli08@163.com (ORCID: 0000-0003-0120-9239); ZHANG Shijie, zhangshijie1@sina.com (ORCID: 0000-0002-2416-2421)
  • Received Date: 2025-04-12
  • Accepted Date: 2025-05-23
  • Published Date: 2025-12-25
  •   Objective  To investigate the regulatory effect of the cyclic guanosine monophosphate-adenosine monophosphate adenosine synthetase (cGAS)-stimulator of interferon genes (STING) signaling pathway on the cytotoxicity of γδT cells against hepatocellular carcinoma (HCC) through in vitro experiments, and to provide new ideas for improving the efficacy of adoptive immunotherapy based on γδT cells.  Methods  Peripheral blood mononuclear cells (PBMCs) were isolated and γδT cells were multiplied, and their purity was measured. Mature γδT cells were divided into γδT group, γδT-G10 group, and γδT-H-151 group. After 24 hours of in vitro stimulation, Western blot was used to measure the expression levels of key proteins in the cGAS-STING signaling pathway, and ELISA was used to measure the concentrations of interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α). The cells in each group were cocultured with MHCC-97H and Huh-7 cells for 6 hours, and then CCK8 assay was used to measure the survival rate of HCC cells in each group. A one-way analysis of variance was used for comparison of normally distributed continuous data between multiple groups, the Dunnett’s T3-test and the Tukey test were used for further comparision between two groups.  Results  Flow cytometry showed that the purity of γδT cells reached above 99%. Western blot showed that there was no significant difference in the expression of cGAS between the γδT group and the other two groups; compared with the γδT group, the γδT-G10 group had significant increases in the expression levels of STING, phosphorylated STING, TBK1, phosphorylated TBK1, interferon regulatory factor 3 (IRF3), and phosphorylated IRF3, while the γδT-H-151 group had significant reductions in the expression of these proteins. ELISA showed that compared with the γδT group, the γδT-G10 group had significant increases in the secretion of IFN-γ and TNF-α by γδT cells (P<0.01 and P<0.05), while the γδT-H-151 group had significant reductions in IFN-γ and TNF-α (P<0.01 and P<0.000 1). CCK-8 assay showed that compared with the γδT group, the γδT-G10 group had significant reductions in the survival rates of the two HCC cell lines (P<0.000 1), while the γδT-H-151 group showed significant increases (P<0.000 1).  Conclusion  The cGAS-STING signaling pathway can regulate the cytotoxicity of γδT cells against HCC in vitro.

     

  • loading
  • [1]
    BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74( 3): 229- 263. DOI: 10.3322/caac.21834.
    [2]
    HAN BF, ZHENG RS, ZENG HM, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4( 1): 47- 53. DOI: 10.1016/j.jncc.2024.01.006.
    [3]
    DU BY, YU RH, GENG XQ, et al. The function of MSP-activated γδT cells in hepatocellular carcinoma[J]. Int Immunopharmacol, 2023, 124( Pt A): 110893. DOI: 10.1016/j.intimp.2023.110893.
    [4]
    AMAJALA KC, GUDIVADA IP, MALLA RR. Gamma delta T cells: Role in immunotherapy of hepatocellular carcinoma[J]. Crit Rev Oncog, 2023, 28( 4): 41- 50. DOI: 10.1615/critrevoncog.2023049893.
    [5]
    XI XY, GUO Y, ZHU M, et al. Identification of new potential antigen recognized by γδT cells in hepatocellular carcinoma[J]. Cancer Immunol Immunother, 2021, 70( 7): 1917- 1927. DOI: 10.1007/s00262-020-02826-y.
    [6]
    BENMEBAREK MR, KARCHES CH, CADILHA BL, et al. Killing mechanisms of chimeric antigen receptor(CAR) T cells[J]. Int J Mol Sci, 2019, 20( 6): 1283. DOI: 10.3390/ijms20061283.
    [7]
    OU L, ZHANG A, CHENG YX, et al. The cGAS-STING pathway: A promising immunotherapy target[J]. Front Immunol, 2021, 12: 795048. DOI: 10.3389/fimmu.2021.795048.
    [8]
    LI T, CHEN ZJ. The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer[J]. J Exp Med, 2018, 215( 5): 1287- 1299. DOI: 10.1084/jem.20180139.
    [9]
    AN X, ZHU YY, ZHENG TS, et al. An analysis of the expression and association with immune cell infiltration of the cGAS/STING pathway in pan-cancer[J]. Mol Ther Nucleic Acids, 2019, 14: 80- 89. DOI: 10.1016/j.omtn.2018.11.003.
    [10]
    SUGAWARA Y, HIBI T. Surgical treatment of hepatocellular carcinoma[J]. Biosci Trends, 2021, 15( 3): 138- 141. DOI: 10.5582/bst.2021.01094.
    [11]
    LIU DM, SONG TQ. Changes in and challenges regarding the surgical treatment of hepatocellular carcinoma in China[J]. Biosci Trends, 2021, 15( 3): 142- 147. DOI: 10.5582/bst.2021.01083.
    [12]
    LI R, JOHNSON R, YU GL, et al. Preservation of cell-based immunotherapies for clinical trials[J]. Cytotherapy, 2019, 21( 9): 943- 957. DOI: 10.1016/j.jcyt.2019.07.004.
    [13]
    ALNAGGAR M, XU Y, LI JX, et al. Allogenic Vγ9Vδ2 T cell as new potential immunotherapy drug for solid tumor: A case study for cholangiocarcinoma[J]. J Immunother Cancer, 2019, 7( 1): 36. DOI: 10.1186/s40425-019-0501-8.
    [14]
    XU Y, XIANG Z, ALNAGGAR M, et al. Allogeneic Vγ9Vδ2 T-cell immunotherapy exhibits promising clinical safety and prolongs the survival of patients with late-stage lung or liver cancer[J]. Cell Mol Immunol, 2021, 18( 2): 427- 439. DOI: 10.1038/s41423-020-0515-7.
    [15]
    WANG XY, ZHANG HB, WANG YQ, et al. DNA sensing via the cGAS/STING pathway activates the immunoproteasome and adaptive T-cell immunity[J]. EMBO J, 2023, 42( 8): e110597. DOI: 10.15252/embj.2022110597.
    [16]
    MOTEDAYEN AVAL L, PEASE JE, SHARMA R, et al. Challenges and opportunities in the clinical development of STING agonists for cancer immunotherapy[J]. J Clin Med, 2020, 9( 10): 3323. DOI: 10.3390/jcm9103323.
    [17]
    NAKAMURA T, SATO T, ENDO R, et al. STING agonist loaded lipid nanoparticles overcome anti-PD-1 resistance in melanoma lung metastasis via NK cell activation[J]. J Immunother Cancer, 2021, 9( 7): e0028‑ 52. DOI: 10.1136/jitc-2021-002852.
    [18]
    KONDO M, IZUMI T, FUJIEDA N, et al. Expansion of human peripheral blood γδ T cells using zoledronate[J]. J Vis Exp, 2011( 55): 3182. DOI: 10.3791/3182.
    [19]
    HOERES T, SMETAK M, PRETSCHER D, et al. Improving the efficiency of Vγ9Vδ2 T-cell immunotherapy in cancer[J]. Front Immunol, 2018, 9: 800. DOI: 10.3389/fimmu.2018.00800.
    [20]
    DIELI F, VERMIJLEN D, FULFARO F, et al. Targeting human{gamma}delta}T cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer[J]. Cancer Res, 2007, 67( 15): 7450- 7457. DOI: 10.1158/0008-5472.CAN-07-0199.
    [21]
    BANERJEE M, MIDDYA S, SHRIVASTAVA R, et al. G10 is a direct activator of human STING[J]. PLoS One, 2020, 15( 9): e0237743. DOI: 10.1371/journal.pone.0237743.
    [22]
    HAAG SM, GULEN MF, REYMOND L, et al. Targeting STING with covalent small-molecule inhibitors[J]. Nature, 2018, 559( 7713): 269- 273. DOI: 10.1038/s41586-018-0287-8.
    [23]
    ZHU ZX, LI HX, LU QZ, et al. mRNA-engineered CD5-CAR-γδTCD5- cells for the immunotherapy of T-cell acute lymphoblastic leukemia[J]. Adv Sci(Weinh), 2024, 11( 35): e2400024. DOI: 10.1002/advs.202400024.
    [24]
    BADOVINAC VP, TVINNEREIM AR, HARTY JT. Regulation of antigen-specific CD8+ T cell homeostasis by perforin and interferon-gamma[J]. Science, 2000, 290( 5495): 1354- 1358. DOI: 10.1126/science.290.5495.1354.
    [25]
    YIN KL, CHU KJ, LI M, et al. Immune regulatory networks and therapy of γδ T cells in liver cancer: Recent trends and advancements[J]. J Clin Transl Hepatol, 2024, 12( 3): 287- 297. DOI: 10.14218/JCTH.2023.00355.
    [26]
    ZAKERI N, HALL A, SWADLING L, et al. Characterisation and induction of tissue-resident gamma delta T-cells to target hepatocellular carcinoma[J]. Nat Commun, 2022, 13: 1372. DOI: 10.1038/s41467-022-29012-1.
    [27]
    YUAN MG, WANG WJ, HAWES I, et al. Advancements in γδT cell engineering: Paving the way for enhanced cancer immunotherapy[J]. Front Immunol, 2024, 15: 1360237. DOI: 10.3389/fimmu.2024.1360237.
    [28]
    LI XM, LU HM, GU YZ, et al. Tim-3 suppresses the killing effect of Vγ9Vδ2 T cells on colon cancer cells by reducing perforin and granzyme B expression[J]. Exp Cell Res, 2020, 386( 1): 111719. DOI: 10.1016/j.yexcr.2019.111719.
    [29]
    LIN JJ, ZENG DY, HE HY, et al. Gene therapy for human ovarian cancer cells using efficient expression of Fas gene combined with γδT cells[J]. Mol Med Rep, 2017, 16( 4): 3791- 3798. DOI: 10.3892/mmr.2017.7107.
    [30]
    AHN EY, PAN G, VICKERS SM, et al. IFN-gammaupregulates apoptosis-related molecules and enhances Fas-mediated apoptosis in human cholangiocarcinoma[J]. Int J Cancer, 2002, 100( 4): 445- 451. DOI: 10.1002/ijc.10516.
    [31]
    ABE T, BARBER GN. Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-κB activation through TBK1[J]. J Virol, 2014, 88( 10): 5328- 5341. DOI: 10.1128/JVI.00037-14.
    [32]
    VIEIRA RS, NASCIMENTO MS, NORONHA IH, et al. STING signaling drives production of innate cytokines, generation of CD8+ T cells and enhanced protection against Trypanosoma cruzi infection[J]. Front Immunol, 2022, 12: 775346. DOI: 10.3389/fimmu.2021.775346.
    [33]
    KUSE N, SUN XM, AKAHOSHI T, et al. Priming of HIV-1-specific CD8+ T cells with strong functional properties from naïve T cells[J]. EBioMedicine, 2019, 42: 109- 119. DOI: 10.1016/j.ebiom.2019.03.078.
    [34]
    SU QY, WANG F, DONG ZB, et al. IFN-γ induces apoptosis in human melanocytes by activating the JAK1/STAT1 signaling pathway[J]. Mol Med Rep, 2020, 22( 4): 3111- 3116. DOI: 10.3892/mmr.2020.11403.
    [35]
    BRAUMÜLLER H, WIEDER T, BRENNER E, et al. T-helper-1-cell cytokines drive cancer into senescence[J]. Nature, 2013, 494( 7437): 361- 365. DOI: 10.1038/nature11824.
    [36]
    BOIERI M, MARCHESE E, PHAM QM, et al. Thymic stromal lymphopoietin-stimulated CD4+ T cells induce senescence in advanced breast cancer[J]. Front Cell Dev Biol, 2022, 10: 1002692. DOI: 10.3389/fcell.2022.1002692.
    [37]
    JORGOVANOVIC D, SONG MJ, WANG LP, et al. Roles of IFN-γ in tumor progression and regression: A review[J]. Biomark Res, 2020, 8: 49. DOI: 10.1186/s40364-020-00228-x.
    [38]
    KAMMERTOENS T, FRIESE C, ARINA A, et al. Tumour ischaemia by interferon-γ resembles physiological blood vessel regression[J]. Nature, 2017, 545( 7652): 98- 102. DOI: 10.1038/nature22311.
    [39]
    KRUSE B, BUZZAI AC, SHRIDHAR N, et al. CD4+ T cell-induced inflammatory cell death controls immune-evasive tumours[J]. Nature, 2023, 618( 7967): 1033- 1040. DOI: 10.1038/s41586-023-06199-x.
    [40]
    GUILLAUME J, PERZOLLI A, BOES M. Strategies to overcome low MHC-I expression in paediatric and adult tumours[J]. Immunother Adv, 2023, 4( 1): ltad028. DOI: 10.1093/immadv/ltad028.
    [41]
    CHOSA N, KYAKUMOTO S, KITO N, et al. Mechanism of Fas-mediated cell death and its enhancement by TNF-alpha in human salivary gland adenocarcinoma cell line HSG[J]. Eur J Oral Sci, 2004, 112( 4): 338- 346. DOI: 10.1111/j.1600-0722.2004.00145.x.
    [42]
    BAKSHI HA, QUINN GA, NASEF MM, et al. Crocin inhibits angiogenesis and metastasis in colon cancer via TNF-α/NF-kB/VEGF pathways[J]. Cells, 2022, 11( 9): 1502. DOI: 10.3390/cells11091502.
    [43]
    DENG Y, GAO HY, WU QH. T-2 toxin induces immunosenescence in RAW264.7 macrophages by activating the HIF-1α/cGAS-STING pathway[J]. J Agric Food Chem, 2024, 72( 43): 24046- 24057. DOI: 10.1021/acs.jafc.4c07268.
    [44]
    WU SY, XIAO Y, WEI JL, et al. MYC suppresses STING-dependent innate immunity by transcriptionally upregulating DNMT1 in triple-negative breast cancer[J]. J Immunother Cancer, 2021, 9( 7): e002528. DOI: 10.1136/jitc-2021-002528.
    [45]
    LIU FR, LIAO ZB, ZHANG ZG. MYC in liver cancer: Mechanisms and targeted therapy opportunities[J]. Oncogene, 2023, 42( 45): 3303- 3318. DOI: 10.1038/s41388-023-02861-w.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (31) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return