| [1] |
ZHOU Y, ZHANG ZW, WANG JQ. Discussion on the prevention and treatment of non-alcoholic fatty liver disease with traditional Chinese medicine from“two-hit” theory[J]. Guid J Tradit Chin Med Pharm, 2017, 23( 18): 109- 111. DOI: 10.13862/j.cnki.cn43-1446/r.2017.18.034.
周雨, 张智伟, 王京奇. 从“二次打击”学说探讨中药防治非酒精性脂肪肝的研究进展[J]. 中医药导报, 2017, 23( 18): 109- 111. DOI: 10.13862/j.cnki.cn43-1446/r.2017.18.034.
|
| [2] |
SU JF, JIANG W. Impact of the“two hit theory” on nonalcoholic fatty liver disease[J]. Acta Med Sin, 2015, 28( 2): 141- 144.
苏剑锋, 江伟.“二次打击”对非酒精性脂肪肝的影响[J]. 华夏医学, 2015, 28( 2): 141- 144.
|
| [3] |
BUZZETTI E, PINZANI M, TSOCHATZIS EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease(NAFLD)[J]. Metabolism, 2016, 65( 8): 1038- 1048. DOI: 10.1016/j.metabol.2015.12.012.
|
| [4] |
CHEN LY, MIN JX, WANG FD. Copper homeostasis and cuproptosis in health and disease[J]. Signal Transduct Target Ther, 2022, 7: 378. DOI: 10.1038/s41392-022-01229-y.
|
| [5] |
LEI HT, WANG HD, WANG JH, et al. Progress in regulation mechanism of copper death[J]. Chin J Pathophysiol, 2023, 39( 8): 1491- 1498. DOI: 10.3969/j.issn.1000-4718.2023.08.018.
雷海桃, 王海东, 王金海, 等. 铜死亡调控机制的研究进展[J]. 中国病理生理杂志, 2023, 39( 8): 1491- 1498. DOI: 10.3969/j.issn.1000-4718.2023.08.018.
|
| [6] |
NAM E, HAN J, SUH JM, et al. Link of impaired metal ion homeostasis to mitochondrial dysfunction in neurons[J]. Curr Opin Chem Biol, 2018, 43: 8- 14. DOI: 10.1016/j.cbpa.2017.09.009.
|
| [7] |
ZHU ZW, YAO L. Research progress in investigating the molecular mechanism of copper homeostasis[J]. Chin Bull Life Sci, 2012, 24( 8): 847- 857. DOI: 10.13376/j.cbls/2012.08.022.
朱志兀, 姚琳. 铜离子稳态平衡分子机理研究进展[J]. 生命科学, 2012, 24( 8): 847- 857. DOI: 10.13376/j.cbls/2012.08.022.
|
| [8] |
TSVETKOV P, COY S, PETROVA B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins[J]. Science, 2022, 375( 6586): 1254- 1261. DOI: 10.1126/science.abf0529.
|
| [9] |
TAN WJ, ZHANG JL, CHEN L, et al. Copper homeostasis and cuproptosis-related genes: Therapeutic perspectives in non-alcoholic fatty liver disease[J]. Diabetes Obes Metab, 2024, 26( 11): 4830- 4845. DOI: 10.1111/dom.15846.
|
| [10] |
ASCHNER M, SKALNY AV, LU RZ, et al. Mitochondrial pathways of copper neurotoxicity: Focus on mitochondrial dynamics and mitophagy[J]. Front Mol Neurosci, 2024, 17: 1504802. DOI: 10.3389/fnmol.2024.1504802.
|
| [11] |
LI LR, YI Y, SHU XW, et al. The correlation between serum copper and non-alcoholic fatty liver disease in American adults: An analysis based on NHANES 2011 to 2016[J]. Biol Trace Elem Res, 2024, 202( 10): 4398- 4409. DOI: 10.1007/s12011-023-04029-9.
|
| [12] |
ZHANG CY, YANG M. Current options and future directions for NAFLD and NASH treatment[J]. Int J Mol Sci, 2021, 22( 14): 7571. DOI: 10.3390/ijms22147571.
|
| [13] |
QU SY, LIU SZ, ZHANG ZQ, et al. Copper in the diet affects lipid metabolism in mice[J]. Basic Clin Med, 2019, 39( 6): 776- 780. DOI: 10.16352/j.issn.1001-6325.2019.06.003.
瞿思遥, 刘思哲, 张祝琴, 等. 饮食中的铜影响小鼠脂质代谢[J]. 基础医学与临床, 2019, 39( 6): 776- 780. DOI: 10.16352/j.issn.1001-6325.2019.06.003.
|
| [14] |
PAN YX. Effects and mechanisms of copper and cadmium exposure on lipid metabolism in zebrafish Danio rerio[D]. Wuhan: Huazhong Agricultural University, 2018. DOI: 10.27158/d.cnki.ghznu.2018.000248.
潘亚雄. 水体铜和镉暴露对斑马鱼脂肪代谢的影响及机理研究[D]. 武汉: 华中农业大学, 2018. DOI: 10.27158/d.cnki.ghznu.2018.000248.
|
| [15] |
WU CT, LIU XX, ZHONG LX, et al. Identification of cuproptosis-related genes in nonalcoholic fatty liver disease[J]. Oxid Med Cell Longev, 2023, 2023: 9245667. DOI: 10.1155/2023/9245667.
|
| [16] |
XU YC, XU YH, ZHAO T, et al. Waterborne Cu exposure increased lipid deposition and lipogenesis by affecting Wnt/β-catenin pathway and the β-catenin acetylation levels of grass carp Ctenopharyngodon idella[J]. Environ Pollut, 2020, 263( Pt B): 114420. DOI: 10.1016/j.envpol.2020.114420.
|
| [17] |
ZHU SY, ZHOU WQ, NIU YY, et al. COX17 restricts renal fibrosis development by maintaining mitochondrial copper homeostasis and restoring complex IV activity[J]. Acta Pharmacol Sin, 2023, 44( 10): 2091- 2102. DOI: 10.1038/s41401-023-01098-3.
|
| [18] |
ZHU MQ, XIE X, LIAO QC, et al. Mechanism of cuproptosis and its role in liver diseases[J]. J Clin Hepatol, 2024, 40( 11): 2332- 2337. DOI: 10.12449/JCH241131.
朱明强, 谢星, 廖启成, 等. 铜死亡的发生机制及在肝脏疾病中的作用[J]. 临床肝胆病杂志, 2024, 40( 11): 2332- 2337. DOI: 10.12449/JCH241131.
|
| [19] |
LIU T, LIU YL, ZHANG FY, et al. Copper homeostasis dysregulation promoting cell damage and the association with liver diseases[J]. Chin Med J, 2023, 136( 14): 1653- 1662. DOI: 10.1097/CM9.00000000000-02697.
|
| [20] |
LI C, YANG W, DENG YF, et al. Research Progresson copper metabolism disorders-mediated non-Alcoholic Fatty liver disease combinedwith srcoa Penia[J]. Prog Physiol Sci, 2024, 55( 2): 163- 170. DOI: 10.20059/j.cnki.pps.2023.10.1090.
李畅, 杨威, 邓云锋, 等. 铜代谢紊乱介导非酒精性脂肪性肝病合并肌少症的研究进展[J]. 生理科学进展, 2024, 55( 2): 163- 170. DOI: 10.20059/j.cnki.pps.2023.10.1090.
|
| [21] |
JOMOVA K, VALKO M. Advances in metal-induced oxidative stress and human disease[J]. Toxicology, 2011, 283( 2-3): 65- 87. DOI: 10.1016/j.tox.2011.03.001.
|
| [22] |
SCHEIBER I, DRINGEN R, MERCER JFB. Copper: Effects of deficiency and overload[J] Met Ions Life Sci, 2013, 13: 359- 387. DOI: 10.1007/978-94-007-7500-8_11.
|
| [23] |
CAO H, SU R, HU G, et al. In vivo effects of high dietary copper levels on hepatocellular mitochondrial respiration and electron transport chain enzymes in broilers[J]. Br Poult Sci, 2016, 57( 1): 63- 70. DOI: 10.1080/00071668.2015.1127895.
|
| [24] |
GUTIÉRREZ-GARCÍA R, DEL POZO T, SUAZO M, et al. Physiological copper exposure in Jurkat cells induces changes in the expression of genes encoding cholesterol biosynthesis proteins[J]. BioMetals, 2013, 26( 6): 1033- 1040. DOI: 10.1007/s10534-013-9680-9.
|
| [25] |
LIU Y, YANG HR, SONG Z, et al. Copper excess in liver HepG2 cells interferes with apoptosis and lipid metabolic signaling at the protein level[J]. Turk J Gastroenterol, 2014, 25( Suppl 1): 116- 121. DOI: 10.5152/tjg.2014.5064.
|
| [26] |
OZCELIK D, OZARAS R, GUREL Z, et al. Copper-mediated oxidative stress in rat liver[J]. Biol Trace Elem Res, 2003, 96( 1-3): 209- 215. DOI: 10.1385/BTER: 96: 1-3: 209.
|
| [27] |
ZHONG GL, LI YX, MA FY, et al. Copper exposure induced chicken hepatotoxicity: Involvement of ferroptosis mediated by lipid peroxidation, ferritinophagy, and inhibition of FSP1-CoQ10 and Nrf2/SLC7A11/GPX4 axis[J]. Biol Trace Elem Res, 2024, 202( 4): 1711- 1721. DOI: 10.1007/s12011-023-03773-2.
|
| [28] |
YU WL, LIAO JZ, YANG F, et al. Chronic tribasic copper chloride exposure induces rat liver damage by disrupting the mitophagy and apoptosis pathways[J]. Ecotoxicol Environ Saf, 2021, 212: 111968. DOI: 10.1016/j.ecoenv.2021.111968.
|
| [29] |
WU LL, GONG W, WU G, et al. Correlation of plasma trace elements and non-alcoholic fatty liver disease[J]. Jiangsu Med J, 2017, 43( 5): 311- 314. DOI: 10.19460/j.cnki.0253-3685.2017.05.003.
吴林林, 龚伟, 吴钢, 等. 血浆微量元素与非酒精性脂肪性肝病的相关性[J]. 江苏医药, 2017, 43( 5): 311- 314. DOI: 10.19460/j.cnki.0253-3685.2017.05.003.
|
| [30] |
DOGUER C, HA JH, COLLINS JF. Intersection of iron and copper metabolism in the mammalian intestine and liver[J]. Compr Physiol, 2018, 8( 4): 1433- 1461. DOI: 10.1002/cphy.c170045.
|
| [31] |
ZHAO JY, LI YW, LI L. The role of iron and hepcidin in hepatic fibrosis[J]. Prog Physiol Sci, 2010, 41( 3): 183- 188.
赵晋英, 李艳伟, 李琳. 铁和铁调素在肝纤维化中的作用[J]. 生理科学进展, 2010, 41( 3): 183- 188.
|
| [32] |
OESTREICHER P, COUSINS RJ. Copper and zinc absorption in the rat: Mechanism of mutual antagonism[J]. J Nutr, 1985, 115( 2): 159- 166. DOI: 10.1093/jn/115.2.159.
|
| [33] |
HIMOTO T, MASAKI T. Associations between zinc deficiency and metabolic abnormalities in patients with chronic liver disease[J]. Nutrients, 2018, 10( 1): 88. DOI: 10.3390/nu10010088.
|
| [34] |
GUO XH, WANG JH, DUAN XL, et al. Metal ion metabolism: New ideas for the traditional Chinese medicine prevention and treatment of chronic liver disease[J]. J Clin Hepatol, 2024, 40( 7): 1498- 1504. DOI: 10.12449/JCH240732.
郭新华, 王佳慧, 段雪琳, 等. 金属离子代谢: 慢性肝病中医药防治新思路[J]. 临床肝胆病杂志, 2024, 40( 7): 1498- 1504. DOI: 10.12449/JCH240732.
|
| [35] |
WANG X, AN P, GU ZL, et al. Mitochondrial metal ion transport in cell metabolism and disease[J]. Int J Mol Sci, 2021, 22( 14): 7525. DOI: 10.3390/ijms22147525.
|
| [36] |
ZHANG C, MIAO JR, FAN X. The role of circadian clock-controlled mitochondrial dynamics in nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2024, 40( 8): 1670- 1676. DOI: 10.12449/JCH240826.
张策, 苗嘉芮, 樊旭. 生物钟调控的线粒体动力学在非酒精性脂肪性肝病中的作用[J]. 临床肝胆病杂志, 2024, 40( 8): 1670- 1676. DOI: 10.12449/JCH240826.
|
| [37] |
VAN TOL AMARAL GUERRA SM, CORDEIRO KOPPE DE FRANÇA L, NETO DA SILVA K, et al. Copper dyshomeostasis and its relationship to AMPK activation, mitochondrial dynamics, and biogenesis of mitochondria: A systematic review of in vivo studies[J]. J Trace Elem Med Biol, 2024, 86: 127549. DOI: 10.1016/j.jtemb.2024.127549.
|
| [38] |
WANG YH, ZHU YQ, CUI HM, et al. Effects of CuSO4 on hepatic mitochondrial function, biogenesis and dynamics in mice[J]. Environ Toxicol, 2024, 39( 4): 2208- 2217. DOI: 10.1002/tox.24085.
|
| [39] |
YANG F, LIAO JZ, YU WL, et al. Exposure to copper induces mitochondria-mediated apoptosis by inhibiting mitophagy and the PINK1/parkin pathway in chicken(Gallus gallus) livers[J]. J Hazard Mater, 2021, 408: 124888. DOI: 10.1016/j.jhazmat.2020.124888.
|
| [40] |
HRUBY M, MARTÍNEZ IIS, STEPHAN H, et al. Chelators for treatment of iron and copper overload: Shift from low-molecular-weight compounds to polymers[J]. Polymers, 2021, 13( 22): 3969. DOI: 10.3390/polym1-3223969.
|
| [41] |
ESPINOZA A, LE BLANC S, OLIVARES M, et al. Iron, copper, and zinc transport: Inhibition of divalent metal transporter 1(DMT1) and human copper transporter 1(hCTR1) by shRNA[J]. Biol Trace Elem Res, 2012, 146( 2): 281- 286. DOI: 10.1007/s12011-011-9243-2.
|
| [42] |
FATHI M, ALAVINEJAD P, HAIDARI Z, et al. The effects of zinc supplementation on metabolic profile and oxidative stress in overweight/obese patients with non-alcoholic fatty liver disease: A randomized, double-blind, placebo-controlled trial[J]. J Trace Elem Med Biol, 2020, 62: 126635. DOI: 10.1016/j.jtemb.2020.126635.
|
| [43] |
BALDARI S, DI ROCCO G, TOIETTA G. Current biomedical use of copper chelation therapy[J]. Int J Mol Sci, 2020, 21( 3): 1069. DOI: 10.3390/ijms21031069.
|
| [44] |
CAPRIOTTI G, VARANI M, LAURI C, et al. Copper-64 labeled nanoparticles for positron emission tomography imaging: A review of the recent literature[J]. Q J Nucl Med Mol Imaging, 2020, 64( 4): 346- 355. DOI: 10.23736/S1824-4785.20.03315-4.
|
| [45] |
ZHOU XX, LIAO J, LIU YJ, et al. Symptom aggravation after withdrawal of metal chelating agent therapy in patients with Wilson’s disease[J]. Brain Behav, 2023, 13( 9): e3170. DOI: 10.1002/brb3.3170.
|
| [46] |
MANLEY OM, ROSENZWEIG AC. Copper-chelating natural products[J]. J Biol Inorg Chem, 2025, 30( 2): 111- 124. DOI: 10.1007/s00775-025-02099-9.
|
| [47] |
SANTINI SJ, TARANTINO G, IEZZI A, et al. Copper-catalyzed dicarbonyl stress in NAFLD mice: Protective effects of Oleuropein treatment on liver damage[J]. Nutr Metab, 2022, 19( 1): 9. DOI: 10.1186/s12986-022-00641-z.
|
| [48] |
ANTONUCCI L, PORCU C, IANNUCCI G, et al. Non-alcoholic fatty liver disease and nutritional implications: Special focus on copper[J]. Nutrients, 2017, 9( 10): 1137. DOI: 10.3390/nu9101137.
|
| [49] |
WAN XH, LI YW, LUO XP, et al. Curcumin attenuated the lipid peroxidation and apoptotic liver injury in copper-overloaded rats[J]. Chin J Pediatr, 2007, 45( 8): 604- 608. DOI: 10.3760/j.issn: 0578-1310.2007.08.011.
万小华, 李毓雯, 罗小平, 等. 铜负荷大鼠肝脏脂质过氧化和凋亡损伤及姜黄素的保护作用[J]. 中华儿科杂志, 2007, 45( 8): 604- 608. DOI: 10.3760/j.issn: 0578-1310.2007.08.011.
|
| [50] |
YANG CL, WU J, CHEN YK. Protective effect of Salvia miltiorrhiza on high-copper diet-induced liver injury in rats[J]. J Tradit Chin Vet Med, 2016, 35( 6): 13- 16. DOI: 10.13823/j.cnki.jtcvm.2016.06.003.
杨成林, 邬静, 陈宇科. 丹参对铜诱导大鼠肝损伤的保护作用研究[J]. 中兽医医药杂志, 2016, 35( 6): 13- 16. DOI: 10.13823/j.cnki.jtcvm.2016.06.003.
|