中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 41 Issue 12
Dec.  2025
Turn off MathJax
Article Contents

Molecular mechanisms of liver regeneration and its therapeutic potential in the context of liver failure

DOI: 10.12449/JCH251231
Research funding:

National Natural Science Foundation of China (81770611);

National Natural Science Foundation of China (82002243);

Key Project of Beijing Natural Science Foundation and Beijing Municipal Education Commission (KZ202010025035);

Capita’s Health Development Research Special Fund Key Project (Shoufa 2020-1-1151);

Beijing Science and Technology Program “Capital Clinical Diagnosis and Treatment Technology Research and Demonstration Application”Special Project (Z191100006619096);

Beijing Science and Technology Program “Capital Clinical Diagnosis and Treatment Technology Research and Demonstration Application”Special Project (Z191100006619097);

Beijing Hospital Management Center “Seedling Plan” Special Fund (QML20201702);

Beijing Municipal Administration of Hospitals “Peak Climbing” Talent Program (DFL20221503);

High-level Public Health Technology Talent Construction Project (Disciplinary Leader-02-13)

More Information
  • Corresponding author: REN Feng, renfeng7512@ccmu.edu.cn (ORCID: 0000-0001-7736-8637)
  • Received Date: 2025-05-07
  • Accepted Date: 2025-07-07
  • Published Date: 2025-12-25
  • Liver failure is a clinical syndrome in which the speed of hepatocyte necrosis exceeds the self-repair capacity of the liver and is caused by various pathogenic factors, posing a serious threat to human health. Due to the complex pathogenesis, high incidence rate, and high mortality rate of liver failure and a lack of effective treatment methods, the treatment of liver failure remains a global challenge and a difficult issue. As an important mechanism by which the liver responds to liver injury, liver regeneration is one of the key factors for successful treatment of liver failure patients and plays a vital role in the development and prognosis of liver failure. Liver regeneration is an extremely complex biological process involving multiple cytokines and transcription factors, which jointly promote hepatocyte proliferation and tissue repair by activating various signaling pathways. This article systematically reviews the molecular mechanism of liver regeneration in liver failure, emphasizes the key role of cytokines (such as interleukin-6, tumor necrosis factor-α, and hepatocyte growth factor) and related signaling pathways in regulating hepatocyte proliferation and tissue repair, and explores the therapeutic potential of liver regeneration in the context of liver failure, in order to provide a reference for the basic research on liver regeneration in liver failure.

     

  • loading
  • [1]
    Liver Failure and Artificial Liver Group, Chinese Society of Infectious Diseases, Chinese Medical Association; Severe Liver Disease and Artificial Liver Group, Chinese Society of Hepatology, Chinese Medical Association. Guideline for diagnosis and treatment of liver failure(2024 version)[J]. J Clin Hepatol, 2024, 40( 12): 2371- 2387. DOI: 10.12449/JCH241206.

    中华医学会感染病学分会肝衰竭与人工肝学组, 中华医学会肝病学分会重型肝病与人工肝学组. 肝衰竭诊治指南(2024年版)[J]. 临床肝胆病杂志, 2024, 40( 12): 2371- 2387. DOI: 10.12449/JCH241206.
    [2]
    MA X, HUANG TD, CHEN XZ, et al. Molecular mechanisms in liver repair and regeneration: From physiology to therapeutics[J]. Signal Transduct Target Ther, 2025, 10( 1): 63. DOI: 10.1038/s41392-024-02104-8.
    [3]
    van der MERWE S, CHOKSHI S, BERNSMEIER C, et al. The multifactorial mechanisms of bacterial infection in decompensated cirrhosis[J]. J Hepatol, 2021, 75( Suppl 1): S82- S100. DOI: 10.1016/j.jhep.2020.11.029.
    [4]
    LI WP, LI L, HUI LJ. Cell plasticity in liver regeneration[J]. Trends Cell Biol, 2020, 30( 4): 329- 338. DOI: 10.1016/j.tcb.2020.01.007.
    [5]
    FERNÁNDEZ J, ACEVEDO J, WIEST R, et al. Bacterial and fungal infections in acute-on-chronic liver failure: Prevalence, characteristics and impact on prognosis[J]. Gut, 2018, 67( 10): 1870- 1880. DOI: 10.1136/gutjnl-2017-314240.
    [6]
    BLAKE MJ, STEER CJ. Liver regeneration in acute on chronic liver failure[J]. Clin Liver Dis, 2023, 27( 3): 595- 616. DOI: 10.1016/j.cld.2023.03.005.
    [7]
    DI-IACOVO N, PIERONI S, PIOBBICO D, et al. Liver regeneration and immunity: A tale to tell[J]. Int J Mol Sci, 2023, 24( 2): 1176. DOI: 10.3390/ijms24021176.
    [8]
    CAMPANA L, ESSER H, HUCH M, et al. Liver regeneration and inflammation: From fundamental science to clinical applications[J]. Nat Rev Mol Cell Biol, 2021, 22( 9): 608- 624. DOI: 10.1038/s41580-021-00373-7.
    [9]
    YU W, ZHANG LJ, LU Y, et al. Role of STAT3 in hepatocyte regeneration after acetaminophen-induced hepatocellular injury in mice[J]. J Clin Hepatol, 2021, 37( 4): 857- 862. DOI: 10.3969/j.issn.1001-5256.2021.04.026.

    余旺, 章礼久, 路燕, 等. STAT3在对乙酰氨基酚所致小鼠肝损伤后肝细胞再生中的作用[J]. 临床肝胆病杂志, 2021, 37( 4): 857- 862. DOI: 10.3969/j.issn.1001-5256.2021.04.026.
    [10]
    ENGELMANN C, MEHTA G, TACKE F. Regeneration in acute-on-chronic liver failure-the phantom lost its camouflage[J]. J Hepatol, 2020, 72( 4): 610- 612. DOI: 10.1016/j.jhep.2020.01.003.
    [11]
    HAFEZ MM, AL-HARBI NO, AL-HOSHANI AR, et al. Hepato-protective effect of rutin via IL-6/STAT3 pathway in CCl4-induced hepatotoxicity in rats[J]. Biol Res, 2015, 48( 1): 30. DOI: 10.1186/s40659-015-0022-y.
    [12]
    XIANG XG, FENG DC, HWANG S, et al. Interleukin-22 ameliorates acute-on-chronic liver failure by reprogramming impaired regeneration pathways in mice[J]. J Hepatol, 2020, 72( 4): 736- 745. DOI: 10.1016/j.jhep.2019.11.013.
    [13]
    LIN YP, LIU XP, LUO YB, et al. The relationship between the Wnt signaling pathway and liver regeneration and its role in liver diseases[J]. J Clin Hepatol, 2024, 40( 5): 1050- 1056. DOI: 10.12449/JCH240529.

    林玉培, 刘晓萍, 罗银冰, 等. Wnt信号通路与肝再生的关系及其在肝脏疾病中的作用[J]. 临床肝胆病杂志, 2024, 40( 5): 1050- 1056. DOI: 10.12449/JCH240529.
    [14]
    YIN YZ, KONG DF, HE K, et al. Aurora kinase A regulates liver regeneration through macrophages polarization and Wnt/β-catenin signalling[J]. Liver Int, 2022, 42( 2): 468- 478. DOI: 10.1111/liv.15094.
    [15]
    LIU H, GAO X, ZHANG W, et al. DDX17-Mediated upregulation of CXCL8 promotes hepatocellular carcinoma progression via co-activating β-catenin/NF-κB complex[J]. Int J Biol Sci, 2025, 21( 3): 1342- 1360. DOI: 10.7150/ijbs.104165.
    [16]
    SUN TL, ANNUNZIATO S, BERGLING S, et al. ZNRF3 and RNF43 cooperate to safeguard metabolic liver zonation and hepatocyte proliferation[J]. Cell Stem Cell, 2021, 28( 10): 1822- 1837.e10. DOI: 10.1016/j.stem.2021.05.013.
    [17]
    LIU Q, WANG SY, FU J, et al. Liver regeneration after injury: Mechanisms, cellular interactions and therapeutic innovations[J]. Clin Transl Med, 2024, 14( 8): e1812. DOI: 10.1002/ctm2.1812.
    [18]
    ROBARTS DR, MCGREAL SR, UMBAUGH DS, et al. Regulation of liver regeneration by hepatocyte O-GlcNAcylation in mice[J]. Cell Mol Gastroenterol Hepatol, 2022, 13( 5): 1510- 1529. DOI: 10.1016/j.jcmgh.2022.01.014.
    [19]
    ZHU JN, KOLTSOVA EK. Two faces of NOTCH1 in liver cancer and immunotherapy[J]. Cancer Discov, 2025, 15( 3): 452- 454. DOI: 10.1158/2159-8290.CD-24-1883.
    [20]
    VERBOVEN E, MOYA IM, SANSORES-GARCIA L, et al. Regeneration defects in Yap and taz mutant mouse livers are caused by bile duct disruption and cholestasis[J]. Gastroenterology, 2021, 160( 3): 847- 862. DOI: 10.1053/j.gastro.2020.10.035.
    [21]
    HENG BC, ZHANG XH, AUBEL D, et al. An overview of signaling pathways regulating YAP/TAZ activity[J]. Cell Mol Life Sci, 2021, 78( 2): 497- 512. DOI: 10.1007/s00018-020-03579-8.
    [22]
    YI M, LI TY, NIU MK, et al. TGF-β: A novel predictor and target for anti-PD-1/PD-L1 therapy[J]. Front Immunol, 2022, 13: 1061394. DOI: 10.3389/fimmu.2022.1061394.
    [23]
    WANG SY, WANG X, SHAN YR, et al. Region-specific cellular and molecular basis of liver regeneration after acute pericentral injury[J]. Cell Stem Cell, 2024, 31( 3): 341- 358. e 7. DOI: 10.1016/j.stem.2024.01.013.
    [24]
    ZHANG C, WEI WJ, TU S, et al. Upregulation of CYR61 by TGF-β and YAP signaling exerts a counter-suppression of hepatocellular carcinoma[J]. J Biol Chem, 2024, 300( 4): 107208. DOI: 10.1016/j.jbc.2024.107208.
    [25]
    YU M, WANG JN, ZHANG X, et al. The mechanism of YAP/TAZ transactivation and dual targeting for cancer therapy[J]. Nat Commun, 2025, 16( 1): 3855. DOI: 10.1038/s41467-025-59309-w.
    [26]
    ZHANG W, ZHU LJ, FANG F, et al. Activin A plays an essential role in migration and proliferation of hepatic stellate cells via Smad3 and calcium signaling[J]. Sci Rep, 2024, 14( 1): 20419. DOI: 10.1038/s41598-024-71304-7.
    [27]
    PARROW NL, FLEMING RE. BMPs and iron: The ins and outs[J]. Blood, 2025, 145( 6): 557- 558. DOI: 10.1182/blood.2024027052.
    [28]
    CUI BY, YANG L, ZHAO YY, et al. HOXA13 promotes liver regeneration through regulation of BMP-7[J]. Biochem Biophys Res Commun, 2022, 623: 23- 31. DOI: 10.1016/j.bbrc.2022.07.018.
    [29]
    MA C, WANG C, ZHANG YF, et al. Phillygenin inhibited M1 macrophage polarization and reduced hepatic stellate cell activation by inhibiting macrophage exosomal miR-125b-5p[J]. Biomed Pharmacother, 2023, 159: 114264. DOI: 10.1016/j.biopha.2023.114264.
    [30]
    ABDEL HALIM AS, RUDAYNI HA, AHMAD CHAUDHARY A, et al. microRNAs: Small molecules with big impacts in liver injury[J]. J Cell Physiol, 2023, 238( 1): 32- 69. DOI: 10.1002/jcp.30908.
    [31]
    MUNAKATA C, FUCHIGAMI Y, HIROISHI S, et al. Evaluation of miR-122 to predict high dose acetaminophen-induced liver injury in mice: The combination uses of 5-fluorouracil[J]. Biol Pharm Bull, 2018, 41( 11): 1732- 1735. DOI: 10.1248/bpb.b18-00504.
    [32]
    WESLEY BT, ROSS ADB, MURARO D, et al. Single-cell atlas of human liver development reveals pathways directing hepatic cell fates[J]. Nat Cell Biol, 2022, 24( 10): 1487- 1498. DOI: 10.1038/s41556-022-00989-7.
    [33]
    ZHANG CY, YE BY, WEI JJ, et al. miR-199a-5p regulates rat liver regeneration and hepatocyte proliferation by targeting TNF-α TNFR1/TRADD/CASPASE8/CASPASE3 signalling pathway[J]. Artif Cells Nanomed Biotechnol, 2019, 47( 1): 4110- 4118. DOI: 10.1080/21691401.2019.1683566.
    [34]
    HUANG CY, LI WX, JIANG S, et al. Application of mesenchymal stem cell-derived exosomes in liver regeneration[J/OL]. Chin J Transplatation Electron Ed, 2025, 19( 4): 268- 273. DOI: 10.3877/cma.j.issn.1674-3903.2025.04.010.

    黄淳雨, 李文馨, 蒋上, 等. 间充质干细胞来源外泌体在肝再生领域的应用[J/OL]. 中华移植杂志(电子版), 2025, 19( 4): 268- 273. DOI: 10. 3877/cma.j.issn.1674-3903.2025.04.010.
    [35]
    KIM J, LEE SK, JEONG SY, et al. Multifaceted action of stem cell-derived extracellular vesicles for nonalcoholic steatohepatitis[J]. J Control Release, 2023, 364: 297- 311. DOI: 10.1016/j.jconrel.2023.10.045.
    [36]
    LI Y, LU LG, CAI XB. Liver regeneration and cell transplantation for end-stage liver disease[J]. Biomolecules, 2021, 11( 12): 1907. DOI: 10.3390/biom11121907.
    [37]
    YADAV P, SINGH SK, RAJPUT S, et al. Therapeutic potential of stem cells in regeneration of liver in chronic liver diseases: Current perspectives and future challenges[J]. Pharmacol Ther, 2024, 253: 108563. DOI: 10.1016/j.pharmthera.2023.108563.
    [38]
    WANG LF, ZHANG Z, XU RN, et al. Human umbilical cord mesenchymal stem cell transfusion in immune non-responders with AIDS: A multicenter randomized controlled trial[J]. Signal Transduct Target Ther, 2021, 6( 1): 217. DOI: 10.1038/s41392-021-00607-2.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (51) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return