[1] YOUNES R,BUGIANESI E. A spotlight on pathogenesis,interactions and novel therapeutic options in NAFLD[J]. Nat Rev Gastroenterol Hepatol,2019,16(2):80-82.
|
[2] JIANG YZ,NIE HM,WANG R. Research advances in the pathogenesis of nonalcoholic fatty liver disease[J]. J Clin Hepatol,2019,35(11):2588-2591.(in Chinese)姜煜资,聂红明,汪蓉.非酒精性脂肪性肝病的发病机制[J].临床肝胆病杂志,2019,35(11):2588-2591.
|
[3] THANAPIROM K,TSOCHATZIS EA. Non-alcoholic fatty liver disease(NAFLD)and the quest for effective treatments[J].Hepatobiliary Surg Nutr,2019,8(1):77-79.
|
[4] LI Z,LI Y,ZHANG HX,et al. Mitochondria-mediated pathogenesis and therapeutics for non-alcoholic fatty liver disease[J]. Mol Nutr Food Res,2019,63(16):e1900043.
|
[5] OSELLAME LD,BLACKER TS,DUCHEN MR. Cel ular and molecular mechanisms of mitochondrial function[J]. Best Pract Res Clin Endocrinol Metab,2012,26(6):711-723.
|
[6] HERZIG S,SHAW RJ. AMPK:Guardian of metabolism and mitochondrial homeostasis[J]. Nat Rev Mol Cell Biol,2018,19(2):121-135.
|
[7] UPADHYAY KK,JADEJA RN,VYAS HS,et al. Carbon monoxide releasing molecule-A1 improves nonalcoholic steatohepatitis via Nrf2 activation mediated improvement in oxidative stress and mitochondrial function[J]. Redox Biol,2020,28:101314.
|
[8] CHEN L,LIU L,LI C,et al. A mix of apple pomace polysaccharide improves mitochondrial function and reduces oxidative stress in the liver of high-fat diet-induced obese mice[J].Mol Nutr Food Res,2017,61(3):10.
|
[9] KIM CS,KWON Y,CHOE SY,et al. Quercetin reduces obesity-induced hepatosteatosis by enhancing mitochondrial oxidative metabolism via heme oxygenase-1[J]. Nutr Metab(Lond),2015,12:33.
|
[10] CHO J,ZHANG Y,PARK SY,et al. Corrigendum:Mitochondrial ATP transporter depletion protects mice against liver steatosis and insulin resistance[J]. Nat Commun,2017,8:16143.
|
[11] BELLANTI F,VILLANI R,TAMBORRA R,et al. Synergistic interaction of fatty acids and oxysterols impairs mitochondrial function and limits liver adaptation during nafld progression[J]. Redox Biol,2018,15:86-96.
|
[12] MOTA M,BANINI BA,CAZANAVE SC,et al. Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease[J]. Metabolism,2016,65(8):1049-1061.
|
[13] LEE K,HADDAD A,OSME A,et al. Hepatic mitochondrial defects in a nonalcoholic fatty liver disease mouse model are associated with increased degradation of oxidative phosphorylation subunits[J]. Mol Cell Proteomics,2018,17(12):2371-2386.
|
[14] SPAHIS S,DELVIN E,BORYS JM,et al. Oxidative stress as a critical factor in nonalcoholic fatty liver disease pathogenesis[J]. Antioxid Redox Signal,2017,26(10):519-541.
|
[15] LIU Y,MU D,CHEN H,et al. Retinol-binding protein 4 induces hepatic mitochondrial dysfunction and promotes hepatic steatosis[J]. J Clin Endocrinol Metab,2016,101(11):4338-4348.
|
[16] ZHENG Y,QU H,XIONG X,et al. Deficiency of mitochondrial glycerol 3-phosphate dehydrogenase contributes to hepatic steatosis[J]. Hepatology,2019,70(1):84-97.
|
[17] CHEN J,FAN X,ZHOU L,et al. Treatment with geraniol ameliorates methionine-choline-deficient diet-induced non-alcoholic steatohepatitis in rats[J]. J Gastroenterol Hepatol,2016,31(7):1357-1365.
|
[18] SHELDON RD,MEERS GM,MORRIS EM,et al. e NOS deletion impairs mitochondrial quality control and exacerbates Western diet-induced NASH[J]. Am J Physiol Endocrinol Metab,2019,317(4):e605-e616.
|
[19] ZHOU H,DU W,LI Y,et al. Effects of melatonin on fatty liver disease:The role of NR4A1/DNA-PKcs/p53 pathway,mitochondrial fission,and mitophagy[J]. J Pineal Res,2018,64(1):10.
|
[20] ZHOU T,CHANG L,LUO Y,et al. Corrigendum to“Mst1 inhibition attenuates non-alcoholic fatty liver disease via reversing Parkin-related mitophagy”[Redox Biol. 21(2019 Feb)101120][J]. Redox Biol,2020,28:101299.
|
[21] LIU P,LIN H,XU Y,et al. Frataxin-mediated PINK1-parkindependent mitophagy in hepatic steatosis:The protective effects of quercetin[J]. Mol Nutr Food Res,2018,62(16):e1800164.
|
[22] MALIK AN,SIMES I,ROSA HS,et al. A diet induced maladaptive increase in hepatic mitochondrial DNA precedes OXPHOS defects and may contribute to non-alcoholic fatty liver disease[J]. Cells,2019,8(10):1222.
|
[23] KOLIAKI C,SZENDROEDI J,KAUL K,et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis[J]. Cell Metab,2015,21(5):739-746.
|
[24] SOOKOIAN S,FLICHMAN D,SCIAN R,et al. Mitochondrial genome architecture in non-alcoholic fatty liver disease[J].J Pathol,2016,240(4):437-449.
|
[25] MCCARTHY CG,WENCESLAU CF,GOULOPOULOU S,et al.Circulating mitochondrial DNA and Tol-like receptor 9 are associated with vascular dysfunction in spontaneously hypertensive rats[J]. Cardiovasc Res,2015,107(1):119-130.
|
[26] PAN J,OU Z,CAI C,et al. Fatty acid activates NLRP3 inflammasomes in mouse Kupffer cells through mitochondrial DNA release[J]. Cell Immunol,2018,332:111-120.
|
[27] KHOO N,FAZZARI M,CHARTOUMPEKIS DV,et al. Electrophilic nitro-oleic acid reverses obesity-induced hepatic steatosis[J]. Redox Biol,2019,22:101132.
|
[28] RATZIU V,GIRAL P,JACQUEMINET S,et al. Rosiglitazone for nonalcoholic steatohepatitis:One-year results of the randomized placebo-controlled Fatty Liver Improvement with Rosiglitazone Therapy(FLIRT)Trial[J]. Gastroenterology,2008,135(1):100-110.
|
[29] GOEDEKE L,PENG L,MONTALVO-ROMERAL V,et al. Control ed-release mitochondrial protonophore(CRMP)reverses dyslipidemia and hepatic steatosis in dysmetabolic nonhuman primates[J]. Sci Transl Med,2019,11(512):eaay0284.
|
[30] PERRY RJ,ZHANG D,ZHANG XM,et al. Controlled-release mitochondrial protonophore reverses diabetes and steatohepatitis in rats[J]. Science,2015,347(6227):1253-1256.
|