[1] |
GUANHUA X, ANNA MAE D. Evidence for and against epithelial-to-mesenchymal[J]. Am J Physiol Gastrointest Liver Physiol, 2013, 305(12): G881-90. DOI: 10.1152/ajpgi.00289.2013
|
[2] |
KALLURI R, WEINBERG RA. The basics of epithelial-mesenchymal transition[J]. J Clin Invest, 2009, 119(6): 1420-1428. DOI: 10.1172/JCI39104
|
[3] |
GREENBURG G, HAY ED. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells[J]. J Cell Biol, 1982, 95(1): 333-339. DOI: 10.1083/jcb.95.1.333
|
[4] |
LEE JM, DEDHAR S, KALLURI R, et al. The epithelial-mesenchymal transition: New insights in signaling, development, and disease[J]. J Cell Biol, 2006, 172(7): 973-981. DOI: 10.1083/jcb.200601018
|
[5] |
THIERY JP, ACLOQUE H, HUANG RY, et al. Epithelial-mesenchymal transitions in development and disease[J]. Cell, 2009, 139(5): 871-890. DOI: 10.1016/j.cell.2009.11.007
|
[6] |
KRIZ W, KAISSLING B, LE HIR M. Epithelial-mesenchymal transition (EMT) in kidney fibrosis: Fact or fantasy?[J]. J Clin Invest, 2011, 121(2): 468-474. DOI: 10.1172/JCI44595
|
[7] |
MIZUTANI A, KOINUMA D, TSUTSUMI S, et al. Cell type-specific target selection by combinatorial binding of Smad2/3 proteins and hepatocyte nuclear factor 4alpha in HepG2 cells[J]. J Biol Chem, 2011, 286(34): 29848-29860. DOI: 10.1074/jbc.M110.217745
|
[8] |
XU J, LAMOUILLE S, DERYNCK R. TGF-beta-induced epithelial to mesenchymal transition[J]. Cell Res, 2009, 19(2): 156-172. DOI: 10.1038/cr.2009.5
|
[9] |
SYN WK, CHOI SS, LIASKOU E, et al. Osteopontin is induced by hedgehog pathway activation and promotes fibrosis progression in nonalcoholic steatohepatitis[J]. Hepatology, 2011, 53(1): 106-115. DOI: 10.1002/hep.23998
|
[10] |
XIE G, KARACA G, SWIDERSKA-SYN M, et al. Cross-talk between Notch and Hedgehog regulates hepatic stellate cell fate in mice[J]. Hepatology, 2013, 58(5): 1801-1813. DOI: 10.1002/hep.26511
|
[11] |
SEN S, LANGIEWICZ M, JUMAA H, et al. Hassan deletion of splicing factor SRSF3 in hepatocytes predisposes to hepatocellular carcinoma in mice[J]. Hepatology, 2015, 1(61): 171-183. DOI: 10.1002/hep.27380/abstract
|
[12] |
ZHANG K, ZHANG M, YAO Q, et al. The hepatocyte-specifically expressed lnc-HSER alleviates hepatic fibrosis by inhibiting hepatocyte apoptosis and epithelial-mesenchymal transition[J]. Theranostics, 2019, 9(25): 7566-7582. DOI: 10.7150/thno.36942
|
[13] |
CHEN T, LIN H, CHEN X, et al. LncRNA Meg8 suppresses activation of hepatic stellate cells and epithelial-mesenchymal transition of hepatocytes via the Notch pathway[J]. Biochem Biophys Res Commun, 2020, 521(4): 921-927. DOI: 10.1016/j.bbrc.2019.11.015
|
[14] |
HE Y, WU YT, HUANG C, et al. Inhibitory effects of long noncoding RNA MEG3 on hepatic stellate cells activation and liver fibrogenesis[J]. Biochim Biophys Acta, 2014, 1842(11): 2204-2215. DOI: 10.1016/j.bbadis.2014.08.015
|
[15] |
ZHU J, LUO Z, PAN Y, et al. H19/miR-148a/USP4 axis facilitates liver fibrosis by enhancing TGF-β signaling in both hepatic stellate cells and hepatocytes[J]. J Cell Physiol, 2019, 234(6): 9698-9710. DOI: 10.1002/jcp.27656
|
[16] |
ZHANG K, HAN X, ZHANG Z, et al. The liver-enriched lnc-LFAR1 promotes liver fibrosis by activating TGFβ and Notch pathways[J]. Nat Commun, 2017, 8(1): 144. DOI: 10.1038/s41467-017-00204-4
|
[17] |
ZOU Y, LI S, LI Z, et al. MiR-146a attenuates liver fibrosis by inhibiting transforming growth factor-β1 mediated epithelial-mesenchymal transition in hepatocytes[J]. Cell Signal, 2019, 58: 1-8. DOI: 10.1016/j.cellsig.2019.01.012
|
[18] |
WU K, YE C, LIN L, et al. Inhibiting miR-21 attenuates experimental hepatic fibrosis by suppressing both the ERK1 pathway in HSC and hepatocyte EMT[J]. Clin Sci (Lond), 2016, 130(16): 1469-1480. DOI: 10.1042/CS20160334
|
[19] |
YU F, ZHENG Y, HONG W, et al. MicroRNA-200a suppresses epithelial-to-mesenchymal transition in rat hepatic stellate cells via GLI family zinc finger 2[J]. Mol Med Rep, 2015, 12(6): 8121-8128. DOI: 10.3892/mmr.2015.4452
|
[20] |
DAI W, ZHAO J, TANG N, et al. MicroRNA-155 attenuates activation of hepatic stellate cell by simultaneously preventing EMT process and ERK1 signalling pathway[J]. Liver Int, 2015, 35(4): 1234-1243. DOI: 10.1111/liv.12660
|
[21] |
GWON MG, AN HJ, KIM JY, et al. Anti-fibrotic effects of synthetic TGF-β1 and Smad oligodeoxynucleotide on kidney fibrosis in vivo and in vitro through inhibition of both epithelial dedifferentiation and endothelial-mesenchymal transitions[J]. FASEB J, 2020, 34(1): 333-349. DOI: 10.1096/fj.201901307RR
|
[22] |
GWON MG, KIM JY, AN HJ, et al. Antifibrotic effect of smad decoy oligodeoxynucleotide in a CCl (4)-induced hepatic fibrosis animal model[J]. Molecules, 2018, 23(8): 1991. DOI: 10.3390/molecules23081991
|
[23] |
KIM KH, LEE WR, KANG YN, et al. Inhibitory effect of nuclear factor-κB decoy oligodeoxynucleotide on liver fibrosis through regulation of the epithelial-mesenchymal transition[J]. Hum Gene Ther, 2014, 25(8): 721-729. DOI: 10.1089/hum.2013.106
|
[24] |
HAO H, ZHANG D, SHI J, et al. Sorafenib induces autophagic cell death and apoptosis in hepatic stellate cell through the JNK and Akt signaling pathways[J]. Anticancer Drugs, 2016, 27(3): 192-203. DOI: 10.1097/CAD.0000000000000316
|
[25] |
CHENG Y, ZHENG H, WANG B, et al. Sorafenib and fluvastatin synergistically alleviate hepatic fibrosis via inhibiting the TGFβ1/Smad3 pathway[J]. Dig Liver Dis, 2018, 50(4): 381-388. DOI: 10.1016/j.dld.2017.12.015
|
[26] |
PRATAP A, SINGH S, MUNDRA V, et al. Attenuation of early liver fibrosis by pharmacological inhibition of smoothened receptor signaling[J]. J Drug Target, 2012, 20(9): 770-782. DOI: 10.3109/1061186X.2012.719900
|
[27] |
ZHAO H, WANG Z, TANG F, et al. Carnosol-mediated Sirtuin 1 activation inhibits Enhancer of Zeste Homolog 2 to attenuate liver fibrosis[J]. Pharmacol Res, 2018, 128: 327-337. DOI: 10.1016/j.phrs.2017.10.013
|
[28] |
PARK JH, PARK B, PARK KK. Suppression of hepatic epithelial-to-mesenchymal transition by melittin via blocking of TGFβ/Smad and MAPK-JNK signaling pathways[J]. Toxins (Basel), 2017, 9(4): 138. DOI: 10.3390/toxins9040138
|
[29] |
CHUANG HM, HO LI, HUANG MH, et al. Non-canonical regulation of type I collagen through promoter binding of SOX2 and its contribution to ameliorating pulmonary fibrosis by butylidenephthalide[J]. Int J Mol Sci, 2018, 19(10): 3024. DOI: 10.3390/ijms19103024
|
[30] |
TAI CJ, CHOONG CY, LIN YC, et al. The anti-hepatic fibrosis activity of ergosterol depended on upregulation of PPARgamma in HSC-T6 cells[J]. Food Funct, 2016, 7(4): 1915-1923. DOI: 10.1039/C6FO00117C
|
[31] |
SONG YN, SUN JJ, LU YY, et al. Therapeutic efficacy of fuzheng-huayu tablet based traditional chinese medicine syndrome differentiation on hepatitis-B-caused cirrhosis: A multicenter double-blind randomized controlled trail[J]. Evid Based Complement Alternat Med, 2013, 2013: 709305.
|
[32] |
YU F, LU Z, CHEN B, et al. Salvianolic acid B-induced microRNA-152 inhibits liver fibrosis by attenuating DNMT1-mediated Patched1 methylation[J]. J Cell Mol Med, 2015, 19(11): 2617-2632. DOI: 10.1111/jcmm.12655
|
[33] |
REN S, YUE Q, WANG Q, et al. Cryptotanshinone suppresses liver fibrosis by attenuating epithelial-mesenchymal transition through targeting hedgehog pathway[J]. Anticancer Agents Med Chem, 2020.[Online ahead of print]
|
[34] |
YANG YZ, ZHAO XJ, XU HJ, et al. Magnesium isoglycyrrhizinate ameliorates high fructose-induced liver fibrosis in rat by increasing miR-375-3p to suppress JAK2/STAT3 pathway and TGF-β1/Smad signaling[J]. Acta Pharmacol Sin, 2019, 40(7): 879-894. http://www.cqvip.com/QK/95561A/20197/7002551626.html
|