[1] |
ESLAM M, VALENTI L, ROMEO S. Genetics and epigenetics of NAFLD and NASH: Clinical impact[J]. J Hepatol, 2018, 68(2): 268-279. DOI: 10.1016/j.jhep.2017.09.003
|
[2] |
COTTER TG, RINELLA M. Nonalcoholic fatty liver disease 2020: The state of the disease[J]. Gastroenterology, 2020, 158(7): 1851-1864. DOI: 10.1053/j.gastro.2020.01.052
|
[3] |
ZHOU J, ZHOU F, WANG W, et al. Epidemiological features of NAFLD from 1999 to 2018 in China[J]. Hepatology, 2020, 71(5): 1851-1864. DOI: 10.1002/hep.31150
|
[4] |
SHIMA T, SEKI K, UMEMURA A, et al. Influence of lifestyle-related diseases and age on the development and progression of non-alcoholic fatty liver disease[J]. Hepatol Res, 2015, 45(5): 548-559. DOI: 10.1111/hepr.12384
|
[5] |
JORDAN AS, MCSHARRY DG, MALHOTRA A. Adult obstructive sleep apnoea[J]. Lancet, 2014, 383(9918): 736-747. DOI: 10.1016/S0140-6736(13)60734-5
|
[6] |
BIN-HASAN S, KATZ S, NUGENT Z, et al. Prevalence of obstructive sleep apnea among obese toddlers and preschool children[J]. Sleep Breath, 2018, 22(2): 511-515. DOI: 10.1007/s11325-017-1576-4
|
[7] |
SARKAR P, MUKHERJEE S, CHAI-COETZER CL, et al. The epidemiology of obstructive sleep apnoea and cardiovascular disease[J]. J Thorac Dis, 2018, 10(Suppl 34): s4189-s4200.
|
[8] |
GAINES J, VGONTZAS AN, FERNANDEZ-MENDOZA J, et al. Obstructive sleep apnea and the metabolic syndrome: The road to clinically-meaningful phenotyping, improved prognosis, and personalized treatment[J]. Sleep Med Rev, 2018, 42: 211-219. DOI: 10.1016/j.smrv.2018.08.009
|
[9] |
JELENIK T, KAUL K, SÉQUARIS G, et al. Mechanisms of insulin resistance in primary and secondary nonalcoholic fatty liver[J]. Diabetes, 2017, 66(8): 2241-2253. DOI: 10.2337/db16-1147
|
[10] |
MESARWI OA, LOOMBA R, MALHOTRA A. Obstructive sleep apnea, hypoxia, and nonalcoholic fatty liver disease[J]. Am J Respir Crit Care Med, 2019, 199(7): 830-841. DOI: 10.1164/rccm.201806-1109TR
|
[11] |
ASFARI MM, NIYAZI F, LOPEZ R, et al. The association of nonalcoholic steatohepatitis and obstructive sleep apnea[J]. Eur J Gastroenterol Hepatol, 2017, 29(12): 1380-1384. DOI: 10.1097/MEG.0000000000000973
|
[12] |
ARISOY A, SERTOČULLARINDAN B, EKIN S, et al. Sleep apnea and fatty liver are coupled via energy metabolism[J]. Med Sci Monit, 2016, 22: 908-913. DOI: 10.12659/MSM.898214
|
[13] |
CAKMAK E, DUKSAL F, ALTINKAYA E, et al. Association between the severity of nocturnal hypoxia in obstructive sleep apnea and non-alcoholic fatty liver damage[J]. Hepat Mon, 2015, 15(11): e32655.
|
[14] |
JIN S, JIANG S, HU A. Association between obstructive sleep apnea and non-alcoholic fatty liver disease: A systematic review and meta-analysis[J]. Sleep Breath, 2018, 22(3): 841-851. DOI: 10.1007/s11325-018-1625-7
|
[15] |
SOOKOIAN S, PIROLA CJ. Obstructive sleep apnea is associated with fatty liver and abnormal liver enzymes: A meta-analysis[J]. Obes Surg, 2013, 23(11): 1815-1825. DOI: 10.1007/s11695-013-0981-4
|
[16] |
NOBILI V, CUTRERA R, LICCARDO D, et al. Obstructive sleep apnea syndrome affects liver histology and inflammatory cell activation in pediatric nonalcoholic fatty liver disease, regardless of obesity/insulin resistance[J]. Am J Respir Crit Care Med, 2014, 189(1): 66-76.
|
[17] |
PETTA S, MARRONE O, TORRES D, et al. Obstructive sleep apnea is associated with liver damage and atherosclerosis in patients with non-alcoholic fatty liver disease[J]. PLoS One, 2015, 10(12): e0142210. DOI: 10.1371/journal.pone.0142210
|
[18] |
PASCHETTA E, BELCI P, ALISI A, et al. OSAS-related inflammatory mechanisms of liver injury in nonalcoholic fatty liver disease[J]. Mediators Inflamm, 2015, 2015: 815721.
|
[19] |
FENG SZ, TIAN JL, ZHANG Q, et al. An experimental research on chronic intermittent hypoxia leading to liver injury[J]. Sleep Breath, 2011, 15(3): 493-502. DOI: 10.1007/s11325-010-0370-3
|
[20] |
SHERWANI SI, ALDANA C, USMANI S, et al. Intermittent hypoxia exacerbates pancreatic β-cell dysfunction in a mouse model of diabetes mellitus[J]. Sleep, 2013, 36(12): 1849-1858. DOI: 10.5665/sleep.3214
|
[21] |
FANG Y, ZHANG Q, TAN J, et al. Intermittent hypoxia-induced rat pancreatic β-cell apoptosis and protective effects of antioxidant intervention[J]. Nutr Diabetes, 2014, 4: e131. DOI: 10.1038/nutd.2014.28
|
[22] |
DRAGER LF, LI J, SHIN MK, et al. Intermittent hypoxia inhibits clearance of triglyceride-rich lipoproteins and inactivates adipose lipoprotein lipase in a mouse model of sleep apnoea[J]. Eur Heart J, 2012, 33(6): 783-790. DOI: 10.1093/eurheartj/ehr097
|
[23] |
SEMENZA GL. Oxygen sensing, homeostasis, and disease[J]. N Engl J Med, 2011, 365(6): 537-547. DOI: 10.1056/NEJMra1011165
|
[24] |
MESARWI OA, SHIN MK, DRAGER LF, et al. Lysyl oxidase as a serum biomarker of liver fibrosis in patients with severe obesity and obstructive sleep apnea[J]. Sleep, 2015, 38(10): 1583-1591. DOI: 10.5665/sleep.5052
|
[25] |
NADEEM R, SINGH M, NIDA M, et al. Effect of obstructive sleep apnea hypopnea syndrome on lipid profile: A meta-regression analysis[J]. J Clin Sleep Med, 2014, 10(5): 475-489. DOI: 10.5664/jcsm.3690
|
[26] |
LI J, THORNE LN, PUNJABI NM, et al. Intermittent hypoxia induces hyperlipidemia in lean mice[J]. Circ Res, 2005, 97(7): 698-706. DOI: 10.1161/01.RES.0000183879.60089.a9
|
[27] |
PARIKH MP, GUPTA NM, MCCULLOUGH AJ. Obstructive sleep apnea and the liver[J]. Clin Liver Dis, 2019, 23(2): 363-382. DOI: 10.1016/j.cld.2019.01.001
|
[28] |
BARROS D, GARCÍA-RÍO F. Obstructive sleep apnea and dyslipidemia: From animal models to clinical evidence[J]. Sleep, 2019, 42(3): zsy236.
|
[29] |
KIM SY, JEONG JM, KIM SJ, et al. Pro-inflammatory hepatic macrophages generate ROS through NADPH oxidase 2 via endocytosis of monomeric TLR4-MD2 complex[J]. Nat Commun, 2017, 8(1): 2247. DOI: 10.1038/s41467-017-02325-2
|
[30] |
SUNDARAM SS, HALBOWER A, PAN Z, et al. Nocturnal hypoxia-induced oxidative stress promotes progression of pediatric non-alcoholic fatty liver disease[J]. J Hepatol, 2016, 65(3): 560-569. DOI: 10.1016/j.jhep.2016.04.010
|
[31] |
CHEN LD, WU RH, HUANG YZ, et al. The role of ferroptosis in chronic intermittent hypoxia-induced liver injury in rats[J]. Sleep Breath, 2020, 24(4): 1767-1773. DOI: 10.1007/s11325-020-02091-4
|
[32] |
ALSHAMMARI GM, BALAKRISHNAN A, CHINNASAMY T. Butein protects the nonalcoholic fatty liver through mitochondrial reactive oxygen species attenuation in rats[J]. Biofactors, 2018, 44(3): 289-298. DOI: 10.1002/biof.1428
|
[33] |
KUMAR D, DWIVEDI DK, LAHKAR M, et al. Hepatoprotective potential of 7, 8-Dihydroxyflavone against alcohol and high-fat diet induced liver toxicity via attenuation of oxido-nitrosative stress and NF-κB activation[J]. Pharmacol Rep, 2019, 71(6): 1235-1243. DOI: 10.1016/j.pharep.2019.07.002
|
[34] |
KANG HH, KIM IK, LEE HI, et al. Chronic intermittent hypoxia induces liver fibrosis in mice with diet-induced obesity via TLR4/MyD88/MAPK/NF-kB signaling pathways[J]. Biochem Biophys Res Commun, 2017, 490(2): 349-355. DOI: 10.1016/j.bbrc.2017.06.047
|
[35] |
RAO J, QIAN X, WANG P, et al. All-trans retinoic acid preconditioning protects against liver ischemia/reperfusion injury by inhibiting the nuclear factor kappa B signaling pathway[J]. J Surg Res, 2013, 180(2): e99-e106. DOI: 10.1016/j.jss.2012.04.008
|
[36] |
REINKE C, BEVANS-FONTI S, DRAGER LF, et al. Effects of different acute hypoxic regimens on tissue oxygen profiles and metabolic outcomes[J]. J Appl Physiol (1985), 2011, 111(3): 881-890. DOI: 10.1152/japplphysiol.00492.2011
|
[37] |
REGUEIRA T, LEPPER PM, BRANDT S, et al. Hypoxia inducible factor-1 alpha induction by tumour necrosis factor-alpha, but not by toll-like receptor agonists, modulates cellular respiration in cultured human hepatocytes[J]. Liver Int, 2009, 29(10): 1582-1592. DOI: 10.1111/j.1478-3231.2009.02109.x
|
[38] |
NOBILI V, ALISI A, CUTRERA R, et al. Altered gut-liver axis and hepatic adiponectin expression in OSAS: Novel mediators of liver injury in paediatric non-alcoholic fatty liver[J]. Thorax, 2015, 70(8): 769-781. DOI: 10.1136/thoraxjnl-2015-206782
|
[39] |
BARCELÓ A, ESQUINAS C, ROBLES J, et al. Gut epithelial barrier markers in patients with obstructive sleep apnea[J]. Sleep Med, 2016, 26: 12-15. DOI: 10.1016/j.sleep.2016.01.019
|
[40] |
SAFARI Z, GÉRARD P. The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD)[J]. Cell Mol Life Sci, 2019, 76(8): 1541-1558.
|
[41] |
MASHAQI S, GOZAL D. Obstructive sleep apnea and systemic hypertension: Gut dysbiosis as the mediator?[J]. J Clin Sleep Med, 2019, 15(10): 1517-1527. DOI: 10.5664/jcsm.7990
|
[42] |
KIM CW, YUN KE, JUNG HS, et al. Sleep duration and quality in relation to non-alcoholic fatty liver disease in middle-aged workers and their spouses[J]. J Hepatol, 2013, 59(2): 351-357. DOI: 10.1016/j.jhep.2013.03.035
|
[43] |
PERELIS M, RAMSEY KM, MARCHEVA B, et al. Circadian transcription from beta cell function to diabetes pathophysiology[J]. J Biol Rhythms, 2016, 31(4): 323-336. DOI: 10.1177/0748730416656949
|
[44] |
SHIGIYAMA F, KUMASHIRO N, TSUNEOKA Y, et al. Mechanisms of sleep deprivation-induced hepatic steatosis and insulin resistance in mice[J]. Am J Physiol Endocrinol Metab, 2018, 15(5): 848-858.
|
[45] |
GAO T, WANG ZX, CAO J, et al. Melatonin attenuates microbiota dysbiosis of jejunum in short-term sleep deprived mice[J]. J Microbiol, 2020, 58(7): 588-597. DOI: 10.1007/s12275-020-0094-4
|
[46] |
PATIL SP, AYAPPA IA, CAPLES SM, et al. Treatment of adult obstructive sleep apnea with positive airway pressure: An American Academy of Sleep Medicine Clinical Practice Guideline[J]. J Clin Sleep Med, 2019, 15(2): 335-343. DOI: 10.5664/jcsm.7640
|
[47] |
LIU X, MIAO Y, WU F, et al. Effect of CPAP therapy on liver disease in patients with OSA: A review[J]. Sleep Breath, 2018, 22(4): 963-972. DOI: 10.1007/s11325-018-1622-x
|
[48] |
UMBRO I, FABIANI V, FABIANI M, et al. Association between non-alcoholic fatty liver diseases and obstructive apnea[J]. Word J Gastroenterol, 2020, 26(20): 2669-2681. DOI: 10.3748/wjg.v26.i20.2669
|
[49] |
KIM D, AHMED A, KUSHIDA C. Continuous positive airway pressure therapy on nonalcoholic fatty liver disease in patients with obstructive sleep apnea[J]. J Clin Sleep Med, 2018, 14(8): 1315-1322. DOI: 10.5664/jcsm.7262
|