[1] |
LIBERAL R, GRANT CR. Cirrhosis and autoimmune liver disease: Current understanding[J]. World J Hepatol, 2016, 8(28): 1157-1168. DOI: 10.4254/wjh.v8.i28.1157
|
[2] |
BÖTTCHER K, ROMBOUTS K, SAFFIOTI F, et al. MAIT cells are chronically activated in patients with autoimmune liver disease and promote profibrogenic hepatic stellate cell activation[J]. Hepatology, 2018, 68(1): 172-186. DOI: 10.1002/hep.29782
|
[3] |
MUSADDAQ G, SHAHZAD N, ASHRAF MA, et al. Circulating liver-specific microRNAs as noninvasive diagnostic biomarkers of hepatic diseases in human[J]. Biomarkers, 2019, 24(2): 103-109. DOI: 10.1080/1354750X.2018.1528631
|
[4] |
AZAR F, COURTET K, DEKKY B, et al. Integration of miRNA-regulatory networks in hepatic stellate cells identifies TIMP3 as a key factor in chronic liver disease[J]. Liver Int, 2020, 40(8): 2021-2033. DOI: 10.1111/liv.14476
|
[5] |
MIELI-VERGANI G, VERGANI D, CZAJA AJ, et al. Autoimmune hepatitis[J]. Nat Rev Dis Primers, 2018, 4: 18017. DOI: 10.1038/nrdp.2018.17
|
[6] |
LIBERAL R, VERGANI D, MIELI-VERGANI G. Update on autoimmune hepatitis[J]. J Clin Transl Hepatol, 2015, 3(1): 42-52. DOI: 10.14218/JCTH.2014.00032
|
[7] |
AN HAACK I, DERKOW K, RIEHN M, et al. The role of regulatory CD4 T cells in maintaining tolerance in a mouse model of autoimmune hepatitis[J]. PLoS One, 2015, 10(11): e0143715. DOI: 10.1371/journal.pone.0143715
|
[8] |
LIU Y, YAN W, YUAN W, et al. Treg/Th17 imbalance is associated with poor autoimmune hepatitis prognosis[J]. Clin Immunol, 2019, 198: 79-88. DOI: 10.1016/j.clim.2018.11.003
|
[9] |
YAN L, HU F, YAN X, et al. Inhibition of microRNA-155 ameliorates experimental autoimmune myocarditis by modulating Th17/Treg immune response[J]. J Mol Med (Berl), 2016, 94(9): 1063-1079. DOI: 10.1007/s00109-016-1414-3
|
[10] |
ALIVERNINI S, GREMESE E, MCSHARRY C, et al. MicroRNA-155-at the critical interface of innate and adaptive immunity in arthritis[J]. Front Immunol, 2017, 8: 1932. http://www.ncbi.nlm.nih.gov/pubmed/29354135
|
[11] |
XIA G, WU S, WANG X, et al. Inhibition of microRNA-155 attenuates concanavalin-A-induced autoimmune hepatitis by regulating Treg/Th17 cell differentiation[J]. Can J Physiol Pharmacol, 2018, 96(12): 1293-1300. DOI: 10.1139/cjpp-2018-0467
|
[12] |
BLAYA D, AGUILAR-BRAVO B, HAO F, et al. Expression of microRNA-155 in inflammatory cells modulates liver injury[J]. Hepatology, 2018, 68(2): 691-706. DOI: 10.1002/hep.29833
|
[13] |
CHEN L, LU FB, CHEN DZ, et al. BMSCs-derived miR-223-containing exosomes contribute to liver protection in experimental autoimmune hepatitis[J]. Mol Immunol, 2018, 93: 38-46. DOI: 10.1016/j.molimm.2017.11.008
|
[14] |
SPEL L, MARTINON F. Inflammasomes contributing to inflammation in arthritis[J]. Immunol Rev, 2020, 294(1): 48-62. DOI: 10.1111/imr.12839
|
[15] |
GLEESON D, HENEGHAN MA, British Society of Gastroenterology. British Society of Gastroenterology (BSG) guidelines for management of autoimmune hepatitis[J]. Gut, 2011, 60(12): 1611-1629. DOI: 10.1136/gut.2010.235259
|
[16] |
TU H, CHEN D, CAI C, et al. microRNA-143-3p attenuated development of hepatic fibrosis in autoimmune hepatitis through regulation of TAK1 phosphorylation[J]. J Cell Mol Med, 2020, 24(2): 1256-1267. DOI: 10.1111/jcmm.14750
|
[17] |
HUANG H, WU T, MAO J, et al. CHI3L1 is a liver-enriched, noninvasive biomarker that can be used to stage and diagnose substantial hepatic fibrosis[J]. OMICS, 2015, 19(6): 339-345. DOI: 10.1089/omi.2015.0037
|
[18] |
MA ZH, SUN CX, SHI H, et al. Detection of miR-122 by fluorescence real-time PCR in blood from patients with chronic hepatitis B and C infections[J]. Cytokine, 2020, 131: 155076. DOI: 10.1016/j.cyto.2020.155076
|
[19] |
FAN Z, ZHANG Q, CHEN H, et al. Circulating microRNAs as a biomarker to predict therapy efficacy in hepatitis C patients with different genotypes[J]. Microb Pathog, 2017, 112: 320-326. DOI: 10.1016/j.micpath.2017.10.003
|
[20] |
TRUNG NT, HOAN NX, TRUNG PQ, et al. Clinical significance of combined circulating TERT promoter mutations and miR-122 expression for screening HBV-related hepatocellular carcinoma[J]. Sci Rep, 2020, 10(1): 8181. DOI: 10.1038/s41598-020-65213-8
|
[21] |
MIGITA K, KOMORI A, KOZURU H, et al. Circulating microRNA Profiles in Patients with Type-1 Autoimmune Hepatitis[J]. PLoS One, 2015, 10(11): e0136908. DOI: 10.1371/journal.pone.0136908
|
[22] |
YAN Y, DENG X, NING X, et al. Pathogenic mechanism of miR-21 in autoimmune lymphoid hyperplasia syndrome[J]. Oncol Lett, 2017, 13(6): 4734-4740. DOI: 10.3892/ol.2017.6039
|
[23] |
CAREY EJ, ALI AH, LINDOR KD. Primary biliary cirrhosis[J]. Lancet, 2015, 386(10003): 1565-1575. DOI: 10.1016/S0140-6736(15)00154-3
|
[24] |
TANAKA A, LEUNG P, GERSHWIN ME. The genetics and epigenetics of primary biliary cholangitis[J]. Clin Liver Dis, 2018, 22(3): 443-455. DOI: 10.1016/j.cld.2018.03.002
|
[25] |
RODRIGUES PM, PERUGORRIA MJ, SANTOS-LASO A, et al. Primary biliary cholangitis: A tale of epigenetically-induced secretory failure?[J]. J Hepatol, 2018, 69(6): 1371-1383. DOI: 10.1016/j.jhep.2018.08.020
|
[26] |
GULAMHUSEIN AF, HIRSCHFIELD GM. Primary biliary cholangitis: Pathogenesis and therapeutic opportunities[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(2): 93-110. DOI: 10.1038/s41575-019-0226-7
|
[27] |
CHANG JC, GO S, DE WAART DR, et al. Soluble adenylyl cyclase regulates bile salt-induced apoptosis in human cholangiocytes[J]. Hepatology, 2016, 64(2): 522-534. DOI: 10.1002/hep.28550
|
[28] |
BANALES JM, SÁEZ E, URIZ M, et al. Up-regulation of microRNA 506 leads to decreased Cl-/HCO3- anion exchanger 2 expression in biliary epithelium of patients with primary biliary cirrhosis[J]. Hepatology, 2012, 56(2): 687-697. DOI: 10.1002/hep.25691
|
[29] |
ANANTHANARAYANAN M, BANALES JM, GUERRA MT, et al. Post-translational regulation of the type Ⅲ inositol 1, 4, 5-trisphosphate receptor by miRNA-506[J]. J Biol Chem, 2015, 290(1): 184-196. DOI: 10.1074/jbc.M114.587030
|
[30] |
GULAMHUSEIN AF, HIRSCHFIELD GM. Pathophysiology of primary biliary cholangitis[J]. Best Pract Res Clin Gastroenterol, 2018, 34-35: 17-25. DOI: 10.1016/j.bpg.2018.05.012
|
[31] |
WANG L, SUN Y, ZHANG Z, et al. CXCR5+ CD4+ T follicular helper cells participate in the pathogenesis of primary biliary cirrhosis[J]. Hepatology, 2015, 61(2): 627-638. DOI: 10.1002/hep.27306
|
[32] |
NAKAGAWA R, MUROYAMA R, SAEKI C, et al. miR-425 regulates inflammatory cytokine production in CD4+ T cells via N-Ras upregulation in primary biliary cholangitis[J]. J Hepatol, 2017, 66(6): 1223-1230. DOI: 10.1016/j.jhep.2017.02.002
|
[33] |
TABIBIAN JH, O'HARA SP, SPLINTER PL, et al. Cholangiocyte senescence by way of N-ras activation is a characteristic of primary sclerosing cholangitis[J]. Hepatology, 2014, 59(6): 2263-2275. DOI: 10.1002/hep.26993
|
[34] |
YANG CY, MA X, TSUNEYAMA K, et al. IL-12/Th1 and IL-23/Th17 biliary microenvironment in primary biliary cirrhosis: implications for therapy[J]. Hepatology, 2014, 59(5): 1944-1953. DOI: 10.1002/hep.26979
|
[35] |
SONG Y, YANG H, JIANG K, et al. miR-181a regulates Th17 cells distribution via up-regulated BCL-2 in primary biliary cholangitis[J]. Int Immunopharmacol, 2018, 64: 386-393. DOI: 10.1016/j.intimp.2018.09.027
|
[36] |
LIANG DY, HOU YQ, LUO LJ, et al. Altered expression of miR-92a correlates with Th17 cell frequency in patients with primary biliary cirrhosis[J]. Int J Mol Med, 2016, 38(1): 131-138. DOI: 10.3892/ijmm.2016.2610
|
[37] |
DYSON JK, BEUERS U, JONES DEJ, et al. Primary sclerosing cholangitis[J]. Lancet, 2018, 391(10139): 2547-2559. DOI: 10.1016/S0140-6736(18)30300-3
|
[38] |
VESTERHUS M, KARLSEN TH. Emerging therapies in primary sclerosing cholangitis: Pathophysiological basis and clinical opportunities[J]. J Gastroenterol, 2020, 55(6): 588-614. DOI: 10.1007/s00535-020-01681-z
|
[39] |
LIU SP, BIAN ZH, ZHAO ZB, et al. animal models of autoimmune liver diseases: A comprehensive review[J]. Clin Rev Allergy Immunol, 2020, 58(2): 252-271. DOI: 10.1007/s12016-020-08778-6
|
[40] |
WU N, MENG F, ZHOU T, et al. Prolonged darkness reduces liver fibrosis in a mouse model of primary sclerosing cholangitis by miR-200b down-regulation[J]. FASEB J, 2017, 31(10): 4305-4324. DOI: 10.1096/fj.201700097R
|
[41] |
HALL C, EHRLICH L, MENG F, et al. Inhibition of microRNA-24 increases liver fibrosis by enhanced menin expression in Mdr2-/- mice[J]. J Surg Res, 2017, 217: 160-169. DOI: 10.1016/j.jss.2017.05.020
|
[42] |
EHRLICH L, HALL C, VENTER J, et al. Tu1616 miR-125b negatively regulates menin expression and protects from liver fibrosis[J]. Gastroenterology, 2016, 150(4): s1150.
|