[1] |
Bureau of Medical Administration, National Health Commission of the People's Republic of China. Guidelines for diagnosis and treatment of primary liver cancer in China (2019 edition)[J]. J Clin Hepatol, 2020, 36(2): 277-292. DOI: 10.3969/j.issn.1001-5256.2020.02.007
中华人民共和国国家卫生健康委员会医政医管局. 原发性肝癌诊疗规范(2019年版)[J]. 临床肝胆病杂志, 2020, 36(2): 277-292. DOI: 10.3969/j.issn.1001-5256.2020.02.007
|
[2] |
HSU MT, COCA-PRADOS M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells[J]. Nature, 1979, 280(5720): 339-340. DOI: 10.1038/280339a0
|
[3] |
ASHWAL-FLUSS R, MEYER M, PAMUDURTI NR, et al. circRNA biogenesis competes with pre-mRNA splicing[J]. Mol Cell, 2014, 56(1): 55-66. DOI: 10.1016/j.molcel.2014.08.019
|
[4] |
QU S, YANG X, LI X, et al. Circular RNA: A new star of noncoding RNAs[J]. Cancer Lett, 2015, 365(2): 141-148. DOI: 10.1016/j.canlet.2015.06.003
|
[5] |
JECK WR, SORRENTINO JA, WANG K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013, 19(2): 141-157. DOI: 10.1261/rna.035667.112
|
[6] |
CHEN G, SHI Y, LIU M, et al. circHIPK3 regulates cell proliferation and migration by sponging miR-124 and regulating AQP3 expression in hepatocellular carcinoma[J]. Cell Death Dis, 2018, 9(2): 175. DOI: 10.1038/s41419-017-0204-3
|
[7] |
WU M, DENG X, ZHONG Y, et al. MafF is regulated via the circ-ITCH/miR-224-5p axis and acts as a tumor suppressor in hepatocellular carcinoma[J]. Oncol Res, 2020, 28(3): 299-309. DOI: 10.3727/096504020X15796890809840
|
[8] |
O'GORMAN W, KWEK KY, THOMAS B, et al. Non-coding RNA in transcription initiation[J]. Biochem Soc Symp, 2006, 73: 131-140. DOI: 10.1042/bss0730131
|
[9] |
LI Z, HUANG C, BAO C, et al. Exon-intron circular RNAs regulate transcription in the nucleus[J]. Nat Struct Mol Biol, 2015, 22(3): 256-264. DOI: 10.1038/nsmb.2959
|
[10] |
WANG Y, WANG Z. Efficient backsplicing produces translatable circular mRNAs[J]. RNA, 2015, 21(2): 172-179. DOI: 10.1261/rna.048272.114
|
[11] |
CHEN W, WU XH, SUN SG. CircRNA related databases and its application[J]. Chin J Biochem Mol Biol, 2019, 35(1): 35-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SWHZ201901007.htm
陈伟, 吴仙华, 孙绍光. circRNA相关数据库及其应用[J]. 中国生物化学与分子生物学报, 2019, 35(1): 35-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SWHZ201901007.htm
|
[12] |
PANDEY PR, MUNK R, KUNDU G, et al. Methods for analysis of circular RNAs[J]. Wiley Interdiscip Rev RNA, 2020, 11(1): e1566.
|
[13] |
CHENG Q, NING D, CHEN J, et al. SIX1 and DACH1 influence the proliferation and apoptosis of hepatocellular carcinoma through regulating p53[J]. Cancer Biol Ther, 2018, 19(5): 381-390. DOI: 10.1080/15384047.2018.1423920
|
[14] |
FU L, CHEN Q, YAO T, et al. Hsa_circ_0005986 inhibits carcinogenesis by acting as a miR-129-5p sponge and is used as a novel biomarker for hepatocellular carcinoma[J]. Oncotarget, 2017, 8(27): 43878-43888. DOI: 10.18632/oncotarget.16709
|
[15] |
LI MF, LI YH, HE YH, et al. Emerging roles of hsa_circ_0005075 targeting miR-431 in the progress of HCC[J]. Biomed Pharmacother, 2018, 99: 848-858. DOI: 10.1016/j.biopha.2018.01.150
|
[16] |
CHEN KH, PAN JF, CHEN ZX, et al. Effects of hsa_circ_0000711 expression level on proliferation and apoptosis of hepatoma cells[J]. Eur Rev Med Pharmacol Sci, 2020, 24(8): 4161-4171.
|
[17] |
FU L, JIANG Z, LI T, et al. Circular RNAs in hepatocellular carcinoma: Functions and implications[J]. Cancer Med, 2018, 7(7): 3101-3109. DOI: 10.1002/cam4.1574
|
[18] |
ZHANG X, XU Y, QIAN Z, et al. circRNA_104075 stimulates YAP-dependent tumorigenesis through the regulation of HNF4a and may serve as a diagnostic marker in hepatocellular carcinoma[J]. Cell Death Dis, 2018, 9(11): 1091. DOI: 10.1038/s41419-018-1132-6
|
[19] |
CHEN D, ZHANG C, LIN J, et al. Screening differential circular RNA expression profiles reveal that hsa_circ_0128298 is a biomarker in the diagnosis and prognosis of hepatocellular carcinoma[J]. Cancer Manag Res, 2018, 10: 1275-1283. DOI: 10.2147/CMAR.S166740
|
[20] |
GUAN Z, TAN J, GAO W, et al. Circular RNA hsa_circ_0016788 regulates hepatocellular carcinoma tumorigenesis through miR-486/CDK4 pathway[J]. J Cell Physiol, 2018, 234(1): 500-508.
|
[21] |
YU J, XU QG, WANG ZG, et al. Circular RNA cSMARCA5 inhibits growth and metastasis in hepatocellular carcinoma[J]. J Hepatol, 2018, 68(6): 1214-1227. DOI: 10.1016/j.jhep.2018.01.012
|
[22] |
QIN M, LIU G, HUO X, et al. Hsa_circ_0001649: A circular RNA and potential novel biomarker for hepatocellular carcinoma[J]. Cancer Biomark, 2016, 16(1): 161-169. DOI: 10.3233/CBM-150552
|
[23] |
SONG C, LI D, LIU H, et al. The competing endogenous circular RNA ADAMTS14 suppressed hepatocellular carcinoma progression through regulating microRNA-572/regulator of calcineurin 1[J]. J Cell Physiol, 2019, 234(3): 2460-2470. DOI: 10.1002/jcp.26764
|
[24] |
TANG L, QIU LD, QIN W, et al. Expression of circular RNA FLI1 in patients with hepatocellular carcinoma and its association with prognosis[J]. J Clin Hepatol, 2019, 35(9): 1980-1984. DOI: 10.3969/j.issn.1001-5256.2019.09.019
唐凌, 邱露蝶, 秦文, 等. 环状RNA FLI1在肝细胞癌患者中的表达及其与预后的关系[J]. 临床肝胆病杂志, 2019, 35(9): 1980-1984. DOI: 10.3969/j.issn.1001-5256.2019.09.019
|
[25] |
HAN D, LI J, WANG H, et al. Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression[J]. Hepatology, 2017, 66(4): 1151-1164. DOI: 10.1002/hep.29270
|
[26] |
WANG L, LONG H, ZHENG Q, et al. Circular RNA circRHOT1 promotes hepatocellular carcinoma progression by initiation of NR2F6 expression[J]. Mol Cancer, 2019, 18(1): 119. DOI: 10.1186/s12943-019-1046-7
|
[27] |
ZHANG PF, WEI CY, HUANG XY, et al. Circular RNA circTRIM33-12 acts as the sponge of MicroRNA-191 to suppress hepatocellular carcinoma progression[J]. Mol Cancer, 2019, 18(1): 105. DOI: 10.1186/s12943-019-1031-1
|
[28] |
HU ZQ, ZHOU SL, LI J, et al. Circular RNA sequencing identifies circASAP1 as a key regulator in hepatocellular carcinoma metastasis[J]. Hepatology, 2020, 72(3): 906-922. DOI: 10.1002/hep.31068
|
[29] |
LI Q, PAN X, ZHU D, et al. Circular RNA MAT2B promotes glycolysis and malignancy of hepatocellular carcinoma through the miR-338-3p/PKM2 axis under hypoxic stress[J]. Hepatology, 2019, 70(4): 1298-1316. DOI: 10.1002/hep.30671
|
[30] |
WANG YG, WANG T, DING M, et al. hsa_circ_0091570 acts as a ceRNA to suppress hepatocellular cancer progression by sponging hsa-miR-1307[J]. Cancer Lett, 2019, 460: 128-138. DOI: 10.1016/j.canlet.2019.06.007
|
[31] |
WEI Y, CHEN X, LIANG C, et al. A noncoding regulatory RNAs network driven by circ-CDYL acts specifically in the early stages hepatocellular carcinoma[J]. Hepatology, 2020, 71(1): 130-147. DOI: 10.1002/hep.30795
|
[32] |
CAO Y, TAO Q, KAO X, et al. Hsa-circRNA-103809 promotes hepatocellular carcinoma development via microRNA-1270/PLAG1 like zinc finger 2 axis[J]. Dig Dis Sci, 2020. [Online ahead of print]
|
[33] |
JIANG QL, FENG SJ, YANG ZY, et al. CircHECTD1 up-regulates mucin 1 expression to accelerate hepatocellular carcinoma development by targeting microRNA-485-5p via a competing endogenous RNA mechanism[J]. Chin Med J (Engl), 2020, 133(15): 1774-1785. DOI: 10.1097/CM9.0000000000000917
|
[34] |
LIU W, YIN C, LIU Y. Circular RNA circ_0091579 promotes hepatocellular carcinoma proliferation, migration, invasion, and glycolysis through miR-490-5p/CASC3 axis[J]. Cancer Biother Radiopharm, 2020. [Online ahead of print]
|
[35] |
LIU X, YANG L, JIANG D, et al. Circ-DENND4C up-regulates TCF4 expression to modulate hepatocellular carcinoma cell proliferation and apoptosis via activating Wnt/β-catenin signal pathway[J]. Cancer Cell Int, 2020, 20: 295. DOI: 10.1186/s12935-020-01346-0
|
[36] |
JIA C, YAO Z, LIN Z, et al. circNFATC3 sponges miR-548I acts as a ceRNA to protect NFATC3 itself and suppressed hepatocellular carcinoma progression[J]. J Cell Physiol, 2021, 236(2): 1252-1269. DOI: 10.1002/jcp.29931
|
[37] |
WANG M, YANG Y, YANG J, et al. circ_KIAA1429 accelerates hepatocellular carcinoma advancement through the mechanism of m6A-YTHDF3-Zeb1[J]. Life Sci, 2020, 257: 118082. DOI: 10.1016/j.lfs.2020.118082
|
[38] |
ZHANG W, ZHU L, YANG G, et al. Hsa_circ_0026134 expression promoted TRIM25- and IGF2BP3-mediated hepatocellular carcinoma cell proliferation and invasion via sponging miR-127-5p[J]. Biosci Rep, 2020, 40(7): BSR20191418. DOI: 10.1042/BSR20191418
|
[39] |
CHEN W, QUAN Y, FAN S, et al. Exosome-transmitted circular RNA hsa_circ_0051443 suppresses hepatocellular carcinoma progression[J]. Cancer Lett, 2020, 475: 119-128. DOI: 10.1016/j.canlet.2020.01.022
|
[40] |
XIONG DD, FENG ZB, LAI ZF, et al. High throughput circRNA sequencing analysis reveals novel insights into the mechanism of nitidine chloride against hepatocellular carcinoma[J]. Cell Death Dis, 2019, 10(9): 658. DOI: 10.1038/s41419-019-1890-9
|
[41] |
CHEN L, KONG R, WU C, et al. Circ-MALAT1 functions as both an mRNA translation brake and a microRNA sponge to promote self-renewal of hepatocellular cancer stem cells[J]. Adv Sci (Weinh), 2020, 7(4): 1900949. DOI: 10.1002/advs.201900949
|
[42] |
HUANG XY, ZHANG PF, WEI CY, et al. Circular RNA circMET drives immunosuppression and anti-PD1 therapy resistance in hepatocellular carcinoma via the miR-30-5p/snail/DPP4 axis[J]. Mol Cancer, 2020, 19(1): 92. DOI: 10.1186/s12943-020-01213-6
|