中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

Value of a microRNA risk score model in predicting the prognosis of hepatocellular carcinoma

DOI: 10.3969/j.issn.1001-5256.2021.05.026
  • Received Date: 2020-10-13
  • Accepted Date: 2020-11-16
  • Published Date: 2021-05-20
  •   Objective  To screen out the microRNAs (miRNAs) associated with the prognosis of hepatocellular carcinoma (HCC) through data mining of miRNA transcriptome data of HCC downloaded from The Cancer Genome Atlas (TCGA) database, to establish a miRNA risk score model, and to investigate its value in predicting the prognosis of HCC.  Methods  The miRNA expression data and clinical data of HCC samples were downloaded from TCGA database and R language was used to screen out differentially expressed miRNAs between HCC tissue and adjacent tissue, which were randomly divided into training set and testing set after being integrated into clinical data. Univariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO) Cox regression analysis were performed for the training set to screen out the miRNAs associated with the prognosis of HCC, and then a miRNA risk score model was established. The Kaplan-Meier method was used to evaluate the robustness of the model and whether it could predict the prognosis of patients in the same clinical stage. Finally, the receiver operating characteristic (ROC) curve was plotted and the area under the ROC curve (AUC) was calculated to compare the predictive accuracy of the model versus TNM staging in the training set, the testing set, and the entire set.  Results  A total of 300 differentially expressed miRNAs were screened out and the LASSO Cox regression analysis revealed that hsa-miR-139-5p, hsa-miR-1180-3p, hsa-miR-1269b, hsa-miR-3680-3p, hsa-miR-509-3-5p, and hsa-miR-31-5p were associated with the prognosis of HCC. The risk score was calculated for each sample according to the established miRNA risk score model, and the samples were divided into high-risk group and low-risk group according to the median risk score. The Kaplan-Meier curve showed that in both training and testing sets, the high-risk group had a significantly lower survival rate than the low-risk group (P < 0.05). The ROC curve was used to evaluate the prediction efficiency of this model, and the results showed that in the training set, the testing set, and the entire set, the miRNA model had an AUC of 0.817, 0.808, and 0.814, respectively, while TNM staging had an AUC of 0.667, 0.665, and 0.663, respectively. The results of independent prognostic analysis also showed that this miRNA score model could be used as an independent prognostic factor for HCC (P < 0.05).  Conclusion  Hsa-miR-139-5p, hsa-miR-1180-3p, hsa-miR-1269b, hsa-miR-3680-3p, hsa-miR-509-3-5p, and hsa-miR-31-5p are associated with the prognosis of HCC, and the miRNA risk score model has a better prediction accuracy than TNM staging in the training set, the testing set, and the entire set. The stratified analysis also shows that the model can predict the prognosis of patients within the same TNM stage, and therefore, it has a certain reference value in clinical practice and can be used as an independent model for predicting the prognosis of HCC patients.

     

  • [1]
    FORNER A, REIG M, BRUIX J. Hepatocellular carcinoma[J]. Lancet, 2018, 391(10127): 1301-1314. DOI: 10.1016/S0140-6736(18)30010-2.
    [2]
    VILLANUEVA A. Hepatocellular carcinoma[J]. New Engl J Med, 2019, 380(15): 1450-1462. DOI: 10.1056/NEJMra1713263.
    [3]
    KULIK L, EL-SERAG HB. Epidemiology and management of hepatocellular carcinoma[J]. Gastroenterology, 2019, 156(2): 477-491. e1. DOI: 10.1053/j.gastro.2018.08.065.
    [4]
    YANG JD, HAINAUT P, GORES GJ, et al. A global view of hepatocellular carcinoma: Trends, risk, prevention and management[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(10): 589-604. DOI: 10.1038/s41575-019-0186-y.
    [5]
    LIN S, GREGORY RI. MicroRNA biogenesis pathways in cancer[J]. Nat Rev Cancer, 2015, 15(6): 321-333. DOI: 10.1038/nrc3932.
    [6]
    RUPAIMOOLE R, SLACK FJ. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases[J]. Nat Rev Drug Discov, 2017, 16(3): 203-222. DOI: 10.1038/nrd.2016.246.
    [7]
    YERUKALA SATHIPATI S, HO SY. Identifying a miRNA signature for predicting the stage of breast cancer[J]. Sci Rep, 2018, 8(1): 16138. DOI: 10.1038/s41598-018-34604-3.
    [8]
    KANWAL R, PLAGA AR, LIU X, et al. MicroRNAs in prostate cancer: Functional role as biomarkers[J]. Cancer Lett, 2017, 407: 9-20. DOI: 10.1016/j.canlet.2017.08.011.
    [9]
    DEB B, UDDIN A, CHAKRABORTY S. miRNAs and ovarian cancer: An overview[J]. J Cell Physiol, 2018, 233(5): 3846-3854. DOI: 10.1002/jcp.26095.
    [10]
    Bureau of Medical Administration National Health Commission of the People's Republic of China. Guidelines for diagnosis and treatment of primary liver cancer in China (2019 edition)[J]. J Clin Hepatol, 2020, 36(2): 277-292. DOI: 10.3969/j.issn.1001-5256.2020.02.007.

    中华人民共和国国家卫生健康委员会医政医管局. 原发性肝癌诊疗规范(2019年版)[J]. 临床肝胆病杂志, 2020, 36(2): 277-292. DOI: 10.3969/j.issn.1001-5256.2020.02.007.
    [11]
    TOMCZAK K, CZERWIŃSKA P, WIZNEROWICZ M. The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge[J]. Contemp Oncol (Pozn), 2015, 19(1A): a68-a77. DOI: 10.5114/wo.2014.47136.
    [12]
    LONG J, ZHANG L, WAN X, et al. A four-gene-based prognostic model predicts overall survival in patients with hepatocellular carcinoma[J]. J Cell Mol Med, 2018, 22(12): 5928-5938. DOI: 10.1111/jcmm.13863.
    [13]
    WANG X, GAO J, ZHOU B, et al. Identification of prognostic markers for hepatocellular carcinoma based on miRNA expression profiles[J]. Life Sci, 2019, 232: 116596. DOI: 10.1016/j.lfs.2019.116596.
    [14]
    JIA D, LI S, LI D, et al. Mining TCGA database for genes of prognostic value in glioblastoma microenvironment[J]. Aging (Albany NY), 2018, 10(4): 592-605. DOI: 10.18632/aging.101415.
    [15]
    LI Y, GU J, XU F, et al. Transcriptomic and functional network features of lung squamous cell carcinoma through integrative analysis of GEO and TCGA data[J]. Sci Rep, 2018, 8(1): 15834. DOI: 10.1038/s41598-018-34160-w.
    [16]
    NAGY A, LANCZKY A, MENYHART O, et al. Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets[J]. Sci Rep, 2018, 8(1): 9227. DOI: 10.1038/s41598-018-27521-y.
    [17]
    TIBSHIRANI R. The lasso method for variable selection in the Cox model[J]. Stat Med, 1997, 16(4): 385-395. DOI: 10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380>3.0.co;2-3.
    [18]
    WEI L, WANG X, LV L, et al. The emerging role of microRNAs and long noncoding RNAs in drug resistance of hepatocellular carcinoma[J]. Mol Cancer, 2019, 18(1): 147. DOI: 10.1186/s12943-019-1086-z.
    [19]
    SADRI NAHAND J, BOKHARAEI-SALIM F, SALMANINEJAD A, et al. microRNAs: Key players in virus-associated hepatocellular carcinoma[J]. J Cell Physiol, 2019, 234(8): 12188-12225. DOI: 10.1002/jcp.27956.
    [20]
    WONG CM, TSANG FH, NG IO. Non-coding RNAs in hepatocellular carcinoma: Molecular functions and pathological implications[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(3): 137-151. DOI: 10.1038/nrgastro.2017.169.
    [21]
    HUA S, LEI L, DENG L, et al. miR-139-5p inhibits aerobic glycolysis, cell proliferation, migration, and invasion in hepatocellular carcinoma via a reciprocal regulatory interaction with ETS1[J]. Oncogene, 2018, 37(12): 1624-1636. DOI: 10.1038/s41388-017-0057-3.
  • Relative Articles

    [1]Yunchong WU, Yanyan YANG, Chuan LI, Xiaohuan WU, Shide LIN. Role of inflammatory cytokines in disorder of glucose metabolism in patients with liver cirrhosis[J]. Journal of Clinical Hepatology, 2024, 40(9): 1886-1890. doi: 10.12449/JCH240926
    [2]Jianan ZHAO, Jinghua PENG, Ping LIU, Yiyang HU. Effect of Cordyceps polysaccharides on hepatocyte apoptosis induced by tumor necrosis factor-α[J]. Journal of Clinical Hepatology, 2021, 37(6): 1368-1372. doi: 10.3969/j.issn.1001-5256.2021.06.029
    [3]Zhen TIAN, Lisha WANG, Naijuan YAO, Yingren ZHAO, Litao RUAN. Role and mechanism of hepatic stellate cells in the pathogenesis of mice with acute-on-chronic liver failure[J]. Journal of Clinical Hepatology, 2021, 37(3): 642-647. doi: 10.3969/j.issn.1001-5256.2021.03.027
    [4]Lihui ZHANG, Minghao LIU, Wenxia ZHAO. Role of lipotoxicity in the development and progression of nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2021, 37(2): 463-466. doi: 10.3969/j.issn.1001-5256.2021.02.045
    [5]Qu Yao, Zhang Wei. Role of cell apoptosis in the pathogenesis of primary biliary cholangitis[J]. Journal of Clinical Hepatology, 2019, 35(6): 1397-1400. doi: 10.3969/j.issn.1001-5256.2019.06.049
    [6]Gong Jing, Jie XinKe. Effect of endoplasmic reticulum stress and autophagy on hepatocyte apoptosis[J]. Journal of Clinical Hepatology, 2019, 35(12): 2828-2832. doi: 10.3969/j.issn.1001-5256.2019.12.041
    [7]Gao Si, Zhao XiangXuan, Lu ZaiMing. Role of cell apoptosis regulated by P53 in treatment of hepatocellular carcinoma[J]. Journal of Clinical Hepatology, 2017, 33(7): 1373-1376. doi: 10.3969/j.issn.1001-5256.2017.07.038
    [8]Zhang ChaoYa, Zhao XiangXuan, Lu ZaiMing, Guo QiYong. Research advances in sorafenib- induced apoptotic signaling pathways in liver cancer cells[J]. Journal of Clinical Hepatology, 2016, 32(4): 816-820. doi: 10.3969/j.issn.1001-5256.2016.04.048
    [9]Pan LiuLan, Jia ShengNan, Ma JingTing, Tai JingHua, Jin ZhenJing. Effect of decoy receptor 3 gene on hepatocyte apoptosis[J]. Journal of Clinical Hepatology, 2016, 32(7): 1330-1333. doi: 10.3969/j.issn.1001-5256.2016.07.023
    [10]Wang YingChun, Kong WeiZong, Jin QingMei, Chen Juan. Effect of salvianolic acid B on hepatocyte apoptosis in rats with nonalcoholic steatohepatitis[J]. Journal of Clinical Hepatology, 2014, 30(12): 1325-1329. doi: 10.3969/j.issn.1001-5256.2014.12.022
    [11]Pan YuanWei, Ping Jian, Xu LieMing. Research advances in main signaling pathways for inducing apoptosis of activated hepatic stellate cells[J]. Journal of Clinical Hepatology, 2014, 30(2): 182-185. doi: 10.3969/j.issn.1001-5256.2014.02.021
    [12]Wang XiXun, Jiang LiXin, Wang JingLin, Liang Jing, Zhai HuiYuan, Xia XianMing. Experimental study on hepatocyte apoptosis induced by acute biliary tract infection[J]. Journal of Clinical Hepatology, 2014, 30(11): 1164-1168. doi: 10.3969/j.issn.1001-5256.2014.11.018
    [13]Weng ShanGeng, Xu ChangGuo, Sun Ying, Shi Zheng, Lin LiJuan. Study on the apoptosis of rat hepatic stellate cells induced by kapamycin[J]. Journal of Clinical Hepatology, 2012, 28(3): 219-222.
    [14]Qiao ChunPing, Chen YueXiang. Advances in study of the relationship between apoptosis and alcoholic liver disease[J]. Journal of Clinical Hepatology, 2012, 28(5): 386-390.
    [15]Cheng Rui, Cai XinRan, Zhou HaoHui, Han ShengHua, Zhu JinHai, Chen HuiXing, Chen YanLing. Omega-3 polyunsaturated fatty acids inhibit inflammation during the early stage of acute pancreatitis[J]. Journal of Clinical Hepatology, 2012, 28(8): 598-602.
    [16]Zhang LiLi, Guo XiaoHong, Liu LiXin, Zhang QianQian. IGFBPrP1 siRNA induced apoptosis in rat hepatic stellate cells and its mechanism[J]. Journal of Clinical Hepatology, 2011, 27(9): 965-969+979.
    [17]Zhang Biao, Sui Tao, Yu XiuYing, Cao YongXian, Yao Yuan, He Hong. Significance of detecting apoptosis of PBMC and cytokine of supernatant induced by PHA in chronic hepatitis B[J]. Journal of Clinical Hepatology, 2004, 20(3): 138-140.
  • 微RNA风险评分模型预测肝细胞癌预后的价值分析 图4.pdf
    微RNA风险评分模型预测肝细胞癌预后的价值分析 图5.pdf
  • Cited by

    Periodical cited type(2)

    1. 马宏涛,李璐辰,刘汝杰,李润东,王磊. 水飞蓟宾联合阿昔莫司口服治疗非酒精性脂肪性肝炎的疗效及安全性观察. 山东医药. 2024(14): 49-52 .
    2. 肖炜,王欣鑫,张坪,周斌,唐奇志,李世香. 从病因病机共性探讨2型糖尿病、非酒精性脂肪性肝病与高尿酸血症内在联系. 中国中医药图书情报杂志. 2024(06): 13-17 .

    Other cited types(2)

  • 加载中
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 53.5 %FULLTEXT: 53.5 %META: 40.6 %META: 40.6 %PDF: 5.9 %PDF: 5.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.5 %其他: 8.5 %其他: 1.0 %其他: 1.0 %Kao-sung: 0.2 %Kao-sung: 0.2 %Toyoake: 0.1 %Toyoake: 0.1 %[]: 0.1 %[]: 0.1 %上海: 5.6 %上海: 5.6 %丽水: 0.1 %丽水: 0.1 %佛山: 0.5 %佛山: 0.5 %保定: 0.1 %保定: 0.1 %兰州: 0.2 %兰州: 0.2 %北京: 4.9 %北京: 4.9 %南京: 0.5 %南京: 0.5 %南充: 0.1 %南充: 0.1 %南宁: 0.3 %南宁: 0.3 %南昌: 0.2 %南昌: 0.2 %卡纳塔克: 0.2 %卡纳塔克: 0.2 %厦门: 0.4 %厦门: 0.4 %台北: 0.1 %台北: 0.1 %台州: 0.9 %台州: 0.9 %吉林: 0.4 %吉林: 0.4 %呼和浩特: 0.1 %呼和浩特: 0.1 %哈尔滨: 0.2 %哈尔滨: 0.2 %嘉兴: 0.2 %嘉兴: 0.2 %天津: 0.2 %天津: 0.2 %太原: 0.5 %太原: 0.5 %威海: 0.1 %威海: 0.1 %孝感: 0.2 %孝感: 0.2 %孟买: 0.2 %孟买: 0.2 %宣城: 0.1 %宣城: 0.1 %常州: 0.2 %常州: 0.2 %常德: 0.1 %常德: 0.1 %广州: 1.5 %广州: 1.5 %弗吉: 0.1 %弗吉: 0.1 %张家口: 2.1 %张家口: 2.1 %徐州: 0.1 %徐州: 0.1 %成都: 0.9 %成都: 0.9 %新德里: 0.1 %新德里: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 0.3 %昆明: 0.3 %晋中: 0.1 %晋中: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 1.4 %杭州: 1.4 %武汉: 1.5 %武汉: 1.5 %水原: 0.1 %水原: 0.1 %沈阳: 0.3 %沈阳: 0.3 %沧州: 0.1 %沧州: 0.1 %法尔肯施泰因: 1.8 %法尔肯施泰因: 1.8 %泰州: 0.3 %泰州: 0.3 %泸州: 0.1 %泸州: 0.1 %洛杉矶: 0.1 %洛杉矶: 0.1 %洛阳: 0.5 %洛阳: 0.5 %济南: 0.2 %济南: 0.2 %济宁: 0.2 %济宁: 0.2 %海口: 0.4 %海口: 0.4 %海得拉巴: 0.4 %海得拉巴: 0.4 %淄博: 0.2 %淄博: 0.2 %深圳: 0.1 %深圳: 0.1 %湖州: 0.4 %湖州: 0.4 %湘潭: 0.1 %湘潭: 0.1 %湛江: 0.1 %湛江: 0.1 %漯河: 0.2 %漯河: 0.2 %牡丹江: 0.2 %牡丹江: 0.2 %石家庄: 0.2 %石家庄: 0.2 %福州: 0.2 %福州: 0.2 %红河: 0.1 %红河: 0.1 %纽约: 0.1 %纽约: 0.1 %罗奥尔凯埃: 0.1 %罗奥尔凯埃: 0.1 %芒廷维尤: 39.1 %芒廷维尤: 39.1 %芝加哥: 0.7 %芝加哥: 0.7 %苏州: 0.3 %苏州: 0.3 %苏拉卡尔塔: 0.2 %苏拉卡尔塔: 0.2 %莫斯科: 0.1 %莫斯科: 0.1 %衡水: 0.2 %衡水: 0.2 %衡阳: 0.1 %衡阳: 0.1 %衢州: 1.0 %衢州: 1.0 %襄阳: 0.1 %襄阳: 0.1 %西宁: 8.2 %西宁: 8.2 %西安: 1.3 %西安: 1.3 %诺沃克: 0.3 %诺沃克: 0.3 %贵阳: 0.3 %贵阳: 0.3 %赣州: 0.3 %赣州: 0.3 %赤峰: 0.1 %赤峰: 0.1 %运城: 1.0 %运城: 1.0 %连云港: 0.1 %连云港: 0.1 %通辽: 0.1 %通辽: 0.1 %邯郸: 0.4 %邯郸: 0.4 %郑州: 0.6 %郑州: 0.6 %重庆: 0.6 %重庆: 0.6 %铜仁: 0.1 %铜仁: 0.1 %锦州: 0.1 %锦州: 0.1 %长春: 1.0 %长春: 1.0 %长沙: 1.4 %长沙: 1.4 %长治: 0.1 %长治: 0.1 %阿什本: 0.8 %阿什本: 0.8 %阿坝: 0.1 %阿坝: 0.1 %青岛: 0.3 %青岛: 0.3 %鞍山: 0.1 %鞍山: 0.1 %鸡西: 0.1 %鸡西: 0.1 %黄石: 0.2 %黄石: 0.2 %其他其他Kao-sungToyoake[]上海丽水佛山保定兰州北京南京南充南宁南昌卡纳塔克厦门台北台州吉林呼和浩特哈尔滨嘉兴天津太原威海孝感孟买宣城常州常德广州弗吉张家口徐州成都新德里无锡昆明晋中朝阳杭州武汉水原沈阳沧州法尔肯施泰因泰州泸州洛杉矶洛阳济南济宁海口海得拉巴淄博深圳湖州湘潭湛江漯河牡丹江石家庄福州红河纽约罗奥尔凯埃芒廷维尤芝加哥苏州苏拉卡尔塔莫斯科衡水衡阳衢州襄阳西宁西安诺沃克贵阳赣州赤峰运城连云港通辽邯郸郑州重庆铜仁锦州长春长沙长治阿什本阿坝青岛鞍山鸡西黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (616) PDF downloads(39) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return