中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

Interaction between hepatitis B virus replication and lipid metabolism in patients with chronic hepatitis B and NAFLD

DOI: 10.3969/j.issn.1001-5256.2021.07.002
  • Received Date: 2021-04-23
  • Accepted Date: 2021-04-23
  • Published Date: 2021-07-20
  • There is still a large number of patients with chronic hepatitis B virus (HBV) infection in China, which greatly affects the health of Chinese people. With the change in lifestyle, the incidence rate of nonalcoholic fatty liver disease (NAFLD) is increasing year by year in China. Some clinical studies have shown that there is a relatively low incidence rate of chronic HBV infection with NAFLD, while there are still reports on NAFLD in promoting the progression of chronic hepatitis B-related diseases. Based on literature search and review, this article attempts to investigate the interaction between HBV replication, abnormal lipid metabolism, and fatty liver disease in patients with chronic hepatitis B and NAFLD, in order to provide ideas for HBV antiviral treatment and prevention of NAFLD.

     

  • [1]
    Chinese Society of Infectious Diseases, Chinese Medical Association, Chinese Society of Infectious Diseases, Chinese Medical Association. Guidelines for the prevention and treatment of chronic hepatitis B(version 2019)[J]. J Clin Hepatol, 2019, 35(12): 2648-2669. DOI: 10.3969/j.issn.1001-5256.2019.12.007.

    中华医学会肝病学分会, 中华医学会感染病学分会. 慢性乙型肝炎防治指南(2019年版)[J]. 临床肝胆病杂志, 2019, 35(12): 2648-2669. DOI: 10.3969/j.issn.1001-5256.2019.12.007.
    [2]
    ZHOU F, ZHOU J, WANG W, et al. Unexpected rapid increase in the burden of NAFLD in China from 2008 to 2018: A systematic review and meta-analysis[J]. Hepatology, 2019, 70(4): 1119-1133. DOI: 10.1002/hep.30702.
    [3]
    SHI JP, FAN JG, WU R, et al. Prevalence and risk factors of hepatic steatosis and its impact on liver injury in Chinese patients with chronic hepatitis B infection[J]. J Gastroenterol Hepatol, 2008, 23(9): 1419-1425. DOI: 10.1111/j.1440-1746.2008.05531.x.
    [4]
    JOO EJ, CHANG Y, YEOM JS, et al. Hepatitis B virus infection and decreased risk of nonalcoholic fatty liver disease: A cohort study[J]. Hepatology, 2017, 65(3): 828-835. DOI: 10.1002/hep.28917.
    [5]
    ZHONG GC, WU YL, HAO FB, et al. Current but not past hepatitis B virus infection is associated with a decreased risk of nonalcoholic fatty liver disease in the Chinese population: A case-control study with propensity score analysis[J]. J Viral Hepat, 2018, 25(7): 842-852. DOI: 10.1111/jvh.12878.
    [6]
    WANG B, LI W, FANG H, et al. Hepatitis B virus infection is not associated with fatty liver disease: Evidence from a cohort study and functional analysis[J]. Mol Med Rep, 2019, 19(1): 320-326. DOI: 10.3892/mmr.2018.9619.
    [7]
    XU QH, JIE YS, SHU X, et al. Relationship of fatty liver with HBV infection, hyperlipidemia and abnormal alanine aminotransferase[J]. Chin J Exp Clin Virol, 2009, 23(2): 141-143. DOI: 10.3760/cma.j.issn.1003-9279.2009.02.022.

    徐启桓, 揭育胜, 舒欣, 等. 脂肪肝与HBV感染、高脂血症及ALT异常的相关分析[J]. 中华实验和临床病毒学杂志, 2009, 23(2): 141-143. DOI: 10.3760/cma.j.issn.1003-9279.2009.02.022
    [8]
    DANE DS, CAMERON CH, BRIGGS M. Virus-like particles in serum of patients with Australia-antigen-associated hepatitis[J]. Lancet, 1970, 1(7649): 695-698. DOI: 10.1016/s0140-6736(70)90926-8.
    [9]
    YAN H, ZHONG G, XU G, et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus[J]. Elife, 2012, 1: e00049. DOI: 10.7554/eLife.00049.
    [10]
    WANG WX, LI M, WU X, et al. HNF1 is critical for the liver-specific function of HBV enhancer Ⅱ[J]. Res Virol, 1998, 149(2): 99-108. DOI: 10.1016/s0923-2516(98)80085-x.
    [11]
    LI M, XIE Y, WU X, et al. HNF3 binds and activates the second enhancer, ENⅡ, of hepatitis B virus[J]. Virology, 1995, 214(2): 371-378. DOI: 10.1006/viro.1995.0046.
    [12]
    CHEN M, HIENG S, QIAN X, et al. Regulation of hepatitis B virus ENI enhancer activity by hepatocyte-enriched transcription factor HNF3[J]. Virology, 1994, 205(1): 127-132. DOI: 10.1006/viro.1994.1627.
    [13]
    GUIDOTTI LG, EGGERS CM, RANEY AK, et al. In vivo regulation of hepatitis B virus replication by peroxisome proliferators[J]. J Virol, 1999, 73(12): 10377-10386. DOI: 10.1128/JVI.73.12.10377-10386.1999.
    [14]
    REESE VC, OROPEZA CE, MCLACHLAN A. Independent activation of hepatitis B virus biosynthesis by retinoids, peroxisome proliferators, and bile acids[J]. J Virol, 2013, 87(2): 991-997. DOI: 10.1128/JVI.01562-12.
    [15]
    TANG H, MCLACHLAN A. Transcriptional regulation of hepatitis B virus by nuclear hormone receptors is a critical determinant of viral tropism[J]. Proc Natl Acad Sci U S A, 2001, 98(4): 1841-1846. DOI: 10.1073/pnas.041479698.
    [16]
    BARDENS A, DÖRING T, STIELER J, et al. Alix regulates egress of hepatitis B virus naked capsid particles in an ESCRT-independent manner[J]. Cell Microbiol, 2011, 13(4): 602-619. DOI: 10.1111/j.1462-5822.2010.01557.x.
    [17]
    CHOU SF, TSAI ML, HUANG JY, et al. The dual role of an ESCRT-0 component HGS in HBV transcription and naked capsid secretion[J]. PLoS Pathog, 2015, 11(10): e1005123. DOI: 10.1371/journal.ppat.1005123.
    [18]
    JIANG B, HIMMELSBACH K, REN H, et al. Subviral hepatitis B virus filaments, like infectious viral particles, are released via multivesicular bodies[J]. J Virol, 2015, 90(7): 3330-3341. DOI: 10.1128/JVI.03109-15.
    [19]
    BREMER CM, BUNG C, KOTT N, et al. Hepatitis B virus infection is dependent on cholesterol in the viral envelope[J]. Cell Microbiol, 2009, 11(2): 249-260. DOI: 10.1111/j.1462-5822.2008.01250.x.
    [20]
    ABDUL-WAHED A, GUILMEAU S, POSTIC C. Sweet Sixteenth for ChREBP: Established roles and future goals[J]. Cell Metab, 2017, 26(2): 324-341. DOI: 10.1016/j.cmet.2017.07.004.
    [21]
    HAMILTON JA, KAMP F. How are free fatty acids transported in membranes? Is it by proteins or by free diffusion through the lipids?[J]. Diabetes, 1999, 48(12): 2255-2269. DOI: 10.2337/diabetes.48.12.2255.
    [22]
    LUO J, YANG H, SONG BL. Mechanisms and regulation of cholesterol homeostasis[J]. Nat Rev Mol Cell Biol, 2020, 21(4): 225-245. DOI: 10.1038/s41580-019-0190-7.
    [23]
    BOUCHARD MJ, SCHNEIDER RJ. The enigmatic X gene of hepatitis B virus[J]. J Virol, 2004, 78(23): 12725-12734. DOI: 10.1128/JVI.78.23.12725-12734.2004.
    [24]
    KIM K, KIM KH, KIM HH, et al. Hepatitis B virus X protein induces lipogenic transcription factor SREBP1 and fatty acid synthase through the activation of nuclear receptor LXRalpha[J]. Biochem J, 2008, 416(2): 219-230. DOI: 10.1042/BJ20081336.
    [25]
    KIM KH, SHIN HJ, KIM K, et al. Hepatitis B virus X protein induces hepatic steatosis via transcriptional activation of SREBP1 and PPARgamma[J]. Gastroenterology, 2007, 132(5): 1955-1967. DOI: 10.1053/j.gastro.2007.03.039.
    [26]
    KIM JY, SONG EH, LEE HJ, et al. HBx-induced hepatic steatosis and apoptosis are regulated by TNFR1- and NF-kappaB-dependent pathways[J]. J Mol Biol, 2010, 397(4): 917-931. DOI: 10.1016/j.jmb.2010.02.016.
    [27]
    PORSTMANN T, SANTOS CR, GRIFFITHS B, et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth[J]. Cell Metab, 2008, 8(3): 224-236. DOI: 10.1016/j.cmet.2008.07.007.
    [28]
    XIAO CX, YANG XN, HUANG QW, et al. ECHS1 acts as a novel HBsAg-binding protein enhancing apoptosis through the mitochondrial pathway in HepG2 cells[J]. Cancer Lett, 2013, 330(1): 67-73. DOI: 10.1016/j.canlet.2012.11.030.
    [29]
    OEHLER N, VOLZ T, BHADRA OD, et al. Binding of hepatitis B virus to its cellular receptor alters the expression profile of genes of bile acid metabolism[J]. Hepatology, 2014, 60(5): 1483-1493. DOI: 10.1002/hep.27159.
    [30]
    SHLOMAI A, PARAN N, SHAUL Y. PGC-1alpha controls hepatitis B virus through nutritional signals[J]. Proc Natl Acad Sci U S A, 2006, 103(43): 16003-16008. DOI: 10.1073/pnas.0607837103.
    [31]
    CURTIL C, ENACHE LS, RADREAU P, et al. The metabolic sensors FXRα, PGC-1α, and SIRT1 cooperatively regulate hepatitis B virus transcription[J]. FASEB J, 2014, 28(3): 1454-1463. DOI: 10.1096/fj.13-236372.
    [32]
    KIM HY, CHO HK, KIM HH, et al. Oxygenated derivatives of cholesterol promote hepatitis B virus gene expression through nuclear receptor LXRα activation[J]. Virus Res, 2011, 158(1-2): 55-61. DOI: 10.1016/j.virusres.2011.03.010.
    [33]
    ZENG J, WU D, HU H, et al. Activation of the liver X receptor pathway inhibits HBV replication in primary human hepatocytes[J]. Hepatology, 2020, 72(6): 1935-1948. DOI: 10.1002/hep.31217.
    [34]
    DU L, MA Y, LIU M, et al. Peroxisome Proliferators Activated Receptor (PPAR) agonists activate hepatitis B virus replication in vivo[J]. Virol J, 2017, 14(1): 96. DOI: 10.1186/s12985-017-0765-x.
    [35]
    HU W, WANG X, DING X, et al. MicroRNA-141 represses HBV replication by targeting PPARA[J]. PLoS One, 2012, 7(3): e34165. DOI: 10.1371/journal.pone.0034165.
    [36]
    WAKUI Y, INOUE J, UENO Y, et al. Inhibitory effect on hepatitis B virus in vitro by a peroxisome proliferator-activated receptor-gamma ligand, rosiglitazone[J]. Biochem Biophys Res Commun, 2010, 396(2): 508-514. DOI: 10.1016/j.bbrc.2010.04.128.
    [37]
    YOON S, JUNG J, KIM T, et al. Adiponectin, a downstream target gene of peroxisome proliferator-activated receptor γ, controls hepatitis B virus replication[J]. Virology, 2011, 409(2): 290-298. DOI: 10.1016/j.virol.2010.10.024.
    [38]
    ZHANG Z, PAN Q, DUAN XY, et al. Fatty liver reduces hepatitis B virus replication in a genotype B hepatitis B virus transgenic mice model[J]. J Gastroenterol Hepatol, 2012, 27(12): 1858-1864. DOI: 10.1111/j.1440-1746.2012.07268.x.
    [39]
    HU D, WANG H, WANG H, et al. Non-alcoholic hepatic steatosis attenuates hepatitis B virus replication in an HBV-immunocompetent mouse model[J]. Hepatol Int, 2018, 12(5): 438-446. DOI: 10.1007/s12072-018-9877-7.
    [40]
    LIN YL, SHIAO MS, METTLING C, et al. Cholesterol requirement of hepatitis B surface antigen (HBsAg) secretion[J]. Virology, 2003, 314(1): 253-260. DOI: 10.1016/s0042-6822(03)00403-3.
    [41]
    DOROBANTU C, MACOVEI A, LAZAR C, et al. Cholesterol depletion of hepatoma cells impairs hepatitis B virus envelopment by altering the topology of the large envelope protein[J]. J Virol, 2011, 85(24): 13373-13383. DOI: 10.1128/JVI.05423-11.
    [42]
    HORIE M, TSUCHIYA Y, HAYASHI M, et al. NB-598: A potent competitive inhibitor of squalene epoxidase[J]. J Biol Chem, 1990, 265(30): 18075-18078. http://europepmc.org/abstract/MED/2211682
    [43]
    TATEMATSU K, TANAKA Y, SUGIYAMA M, et al. Host sphingolipid biosynthesis is a promising therapeutic target for the inhibition of hepatitis B virus replication[J]. J Med Virol, 2011, 83(4): 587-593. DOI: 10.1002/jmv.21970.
    [44]
    ZHANG JY, DUAN ZP, ZHANG JL, et al. Research advances in the role of sphingolipids in HCV and HBV life cycles[J]. Chin J Hepatol, 2016, 24(12): 945-947. DOI: 10.3760/cma.j.issn.1007-3418.2016.12.016.

    张金艳, 段钟平, 张金兰, 等. 鞘脂在HCV和HBV生命周期中作用的研究进展[J]. 中华肝脏病杂志, 2016, 24(12): 945-947. DOI: 10.3760/cma.j.issn.1007-3418.2016.12.016.
    [45]
    HUANG Q, LEI H, DING L, et al. Stimulated phospholipid synthesis is key for hepatitis B virus replications[J]. Sci Rep, 2019, 9(1): 12989. DOI: 10.1038/s41598-019-49367-8.
    [46]
    PARK ES, LEE JH, HONG JH, et al. Phosphatidylcholine alteration identified using MALDI imaging MS in HBV-infected mouse livers and virus-mediated regeneration defects[J]. PLoS One, 2014, 9(8): e103955. DOI: 10.1371/journal.pone.0103955.
    [47]
    HUANG H, SUN Z, PAN H, et al. Serum metabolomic signatures discriminate early liver inflammation and fibrosis stages in patients with chronic hepatitis B[J]. Sci Rep, 2016, 6: 30853. DOI: 10.1038/srep30853.
    [48]
    LI H, ZHU W, ZHANG L, et al. The metabolic responses to hepatitis B virus infection shed new light on pathogenesis and targets for treatment[J]. Sci Rep, 2015, 5: 8421. DOI: 10.1038/srep08421.
    [49]
    GAVILANES F, GONZALEZ-ROS JM, PETERSON DL. Structure of hepatitis B surface antigen. Characterization of the lipid components and their association with the viral proteins[J]. J Biol Chem, 1982, 257(13): 7770-7777. http://www.ncbi.nlm.nih.gov/pubmed/7085648
    [50]
    OKAMURA H, NIO Y, AKAHORI Y, et al. Fatty acid biosynthesis is involved in the production of hepatitis B virus particles[J]. Biochem Biophys Res Commun, 2016, 475(1): 87-92. DOI: 10.1016/j.bbrc.2016.05.043.
    [51]
    ESSER K, LUCIFORA J, WETTENGEL J, et al. Lipase inhibitor orlistat prevents hepatitis B virus infection by targeting an early step in the virus life cycle[J]. Antiviral Res, 2018, 151: 4-7. DOI: 10.1016/j.antiviral.2018.01.001.
  • Relative Articles

    [1]Jie LU, Dingchun LI, Ye LIU, Linna YUAN, Zhiwen DUAN, Wu LI. Clinical efficacy of low-dose plasma exchange combined with double plasma molecular absorption system/hemoperfusion in treatment of acute-on-chronic liver failure[J]. Journal of Clinical Hepatology, 2022, 38(11): 2526-2531. doi: 10.3969/j.issn.1001-5256.2022.11.017
    [2]Wu YiChen, Yao HongYu, Wang KaiLi, Jiang QiYu, Liu Chang, Xing HanQian, Liu SuXia, You ShaoLi, Zhao Jun. Effect of plasma exchange on bioactivity of peripheral blood CD34+ cells in patients with acute-on-chronic (subacute) liver failure[J]. Journal of Clinical Hepatology, 2018, 34(11): 2383-2387. doi: 10.3969/j.issn.1001-5256.2018.11.023
    [3]Li Shuang, Chen Yu. Coping with shortage of plasma-The new therapeutic pattern of non-bioartificial liver[J]. Journal of Clinical Hepatology, 2017, 33(9): 1687-1692. doi: 10.3969/j.issn.1001-5256.2017.09.012
    [4]Hou HuanRong, Shang Jia, Kang Yi, Li YuKui, Ceng YanLi, Ding GangQiang, Mao ZhongShan, Xiao ErHui. Clinical effect of plasma exchange combined with hemofiltration in patients with subacute liver failure induced by antitubercular agents[J]. Journal of Clinical Hepatology, 2016, 32(2): 342-346. doi: 10.3969/j.issn.1001-5256.2016.02.030
    [5]Wang QingHai, Tian Yi. Clinical efficacy of modulation of intestinal microecology and plasmapheresis for preventing and treating multiple organ failure in patients with severe hepatitis[J]. Journal of Clinical Hepatology, 2015, 31(9): 1426-1429. doi: 10.3969/j.issn.1001-5256.2015.09.015
    [6]Yu BingXue, Wu JianLin, Wu JiZhou, Wang ZunFu. Effect of non-bioartificial liver support system on serum manganese levels in patients with hepatic encephalopathy[J]. Journal of Clinical Hepatology, 2015, 31(8): 1311-1313. doi: 10.3969/j.issn.1001-5256.2015.08.031
    [7]Zhang LiangJie, Chen HuiJuan, Zhao ShouSong. Effects of artificial liver plasma exchange on cytokines in patients with liver failure[J]. Journal of Clinical Hepatology, 2015, 31(4): 578-581. doi: 10.3969/j.issn.1001-5256.2015.04.024
    [8]Wang Xian, Wang ShaoYang, Huang DeDong, Chen Jian, Chen DeLiang. Analysis of short-term prognostic factors in patients with HBV-related acute-on-chronic liver failure treated with artificial liver support system[J]. Journal of Clinical Hepatology, 2014, 30(4): 367-369. doi: 10.3969/j.issn.1001-5256.2014.04.020
    [9]Wu ShaoHong, Gan JianHe, Huang XiaoPing, Lin Hua, Lu NianFang, Wu JiangQuan, Zheng RuiQiang. Clinical effect of albumin dialysis combined with plasma perfusion in treatment of liver failure[J]. Journal of Clinical Hepatology, 2014, 30(5): 434-437. doi: 10.3969/j.issn.1001-5256.2014.05.013
    [10]Zhang Lin, Zhao ShouSong. Clinical efficacy of plasma exchange therapy in treatment of liver failure[J]. Journal of Clinical Hepatology, 2014, 30(10): 1015-1019. doi: 10.3969/j.issn.1001-5256.2014.10.010
    [11]Hu QiJiang, Jiang YingAn. Evaluation of the therapeutic efficacy of lamivudine combined with plasma exchange for treating acute-on-chronic hepatitis B liver failure [J]. Journal of Clinical Hepatology, 2013, 29(2): 107-109.
    [12]Zhou Jian, Wan Hong. Relationship between changes in serum cytokine levels after artificial liver therapy and clinical prognosis in patients with liver failure[J]. Journal of Clinical Hepatology, 2013, 29(7): 535-537. doi: 1001-5256 (2013) 07-0535-03
    [13]Zhang AiMin, You ShaoLi, Wan ZhiHong, Rong YiHui, Zhu Bing, Zang Hong, Xin ShaoJie. Combination therapy of plasma perfusion, plasma exchange, and entecavir in patients with hepatitis B acute-on-chronic liver failure[J]. Journal of Clinical Hepatology, 2012, 28(10): 744-747.
    [14]Liao JinMao, Li ZhuoRi, Hu XiaoXuan. The therapeutic effect of plasma exchange therapy in patients with severe hepatitis[J]. Journal of Clinical Hepatology, 2012, 28(4): 302-304.
    [15]Zhang WenHua, Jia WenLing, Zhou ZiYing, Tang HaiTao, Wang FengMei. Investigation on the method and safety of the non-heparinized plasma exchange therapy in treating patients with hepatic failure[J]. Journal of Clinical Hepatology, 2012, 28(1): 50-52.
    [18]Gao QingWei, Hu MeiTing, Yuan DeSheng, Wang Yong, Li BenKe, Han Guang, Wang RuGang, Sun WeiXiang. Analysis of influence factor and efficacy of plasma exchange therapy for chronic severe hepatitis B[J]. Journal of Clinical Hepatology, 2007, 23(5): 349-351.
  • Cited by

    Periodical cited type(30)

    1. 邹暾,龙文兴,周定中,周忠威,彭俊. 原发性肝癌采用肝动脉化疗栓塞术联合RFA的疗效及对血清miR-202、FHIT和P16蛋白水平的影响. 湘南学院学报(医学版). 2024(01): 27-29+78 .
    2. 余令兵. TACE中灌注吡柔比星治疗原发性肝癌的临床疗效及对免疫功能、血清肿瘤标志物水平的影响. 中国卫生工程学. 2024(02): 238-240+243 .
    3. 王娟,田宁,刘超,张山燕,周远. 肝动脉化疗栓塞联合靶向药物及免疫检查点抑制剂治疗中晚期肝癌的效果及对患者生存时间的影响. 大医生. 2024(07): 36-39 .
    4. 胡迎超. 血清甲胎蛋白和巨噬细胞移动抑制因子水平与原发性肝癌肝动脉化疗栓塞术患者预后的关系. 慢性病学杂志. 2023(01): 116-118 .
    5. 周菲菲,黄荣,蒋军,毛晓帆. 平均血小板体积/淋巴细胞比值对原发性肝癌SBRT治疗预后的评估价值. 西部医学. 2023(04): 563-567 .
    6. 何翠瑛,苏贞栋,陈燕红,周林荣,杨宇,姚清深. 阿帕替尼联合TACE治疗原发性肝癌复发生存的影响因素分析. 中西医结合肝病杂志. 2023(04): 298-302 .
    7. 张栋华,宋爱军,胡海军,刘朝阳. 经导管动脉化疗栓塞联合射频消融术治疗原发性肝癌患者的临床疗效. 癌症进展. 2023(08): 858-861 .
    8. 王如芹,高振东,高宗毅. 影响立体定向放射治疗原发性肝癌效果的相关因素分析. 中国基层医药. 2022(02): 285-290 .
    9. 刘爽. 基于聚焦解决模式的放松训练干预在肝癌射频消融术围术期护理中的应用效果评估. 黑龙江医学. 2022(01): 76-78 .
    10. 兰海涛,黄真婷,王小星. 超选择性肝动脉化疗栓塞术联合阿帕替尼对中晚期原发性肝癌患者血清MMP表达的影响. 数理医药学杂志. 2022(04): 597-599 .
    11. 张雪婷,周祖邦,薛亚娥,张明华,杜学晴. TACE联合热消融与单独TACE治疗结直肠癌肝转移疗效:Meta分析. 中国介入影像与治疗学. 2022(05): 278-283 .
    12. 杜炜玮,段铮,胡斌. 经皮RFA治疗原发性肝癌的效果及对血清TGF-β1、EGR2水平的影响. 分子诊断与治疗杂志. 2022(04): 635-638 .
    13. 武文华,冯秦辉,蔡芝芳,贾晓黎,杨锐华,党双锁. 经导管动脉化疗栓塞术联合超声引导射频消融术治疗原发性肝癌对疗效及免疫功能的影响. 中国医师进修杂志. 2022(05): 459-464 .
    14. 王瑛,袁鹤立,赵利,张亚丽,马向明. 伴营养不良风险的原发性肝癌患者临床特征及预后因素分析. 中西医结合肝病杂志. 2022(06): 494-498 .
    15. 柯映平,叶绍光,卢舜彬. 肝动脉化疗栓塞术联合FOLFOX方案持续性动脉灌注化疗在巴塞罗那B期原发性肝癌患者中的应用效果. 中国当代医药. 2022(18): 73-76 .
    16. 张贻庆,崔贵医,杨磊,刘刚,冯世杰,王劲. 肝肿瘤切除术与射频消融术治疗原发性肝癌的疗效及其对血清AFP、CEA、CA125水平的影响. 实用癌症杂志. 2022(08): 1316-1319 .
    17. 孙玉,张洪海,袁春旺,龙江,郑加生,张永宏. C反应蛋白/白蛋白比值影响肝动脉栓塞联合微波消融治疗中期肝细胞癌的预后. 肝胆胰外科杂志. 2022(10): 587-592 .
    18. 郝晓光,李伟靖,朱丽娜,史博,艾宁,吴勇超,李智岗. 中晚期肝癌患者经导管化疗栓塞治疗后序贯射频消融手术治疗时机的选择. 介入放射学杂志. 2022(09): 908-912 .
    19. 章甜,贾思静,孙冬雪,龙奉玺,唐东昕,杨柱. 拉米夫定联合TACE治疗HBV相关性中晚期肝癌的Meta分析. 临床医学研究与实践. 2021(13): 36-41+47 .
    20. 付卫东,尚靖智. 肝动脉化疗栓塞术联合经皮射频消融术治疗中晚期肝癌的临床疗效评价. 吉林医学. 2021(05): 1095-1098 .
    21. 谷涛,于经瀛. 肝动脉化疗栓塞术治疗原发性进展性肝细胞癌新进展. 协和医学杂志. 2021(03): 380-385 .
    22. 刘人杰. 索拉菲尼治疗原发性肝癌的效果及对患者血清HSP90α、VEGF水平的影响. 中国医学创新. 2021(14): 15-19 .
    23. 高磊磊,秦帅鑫,陈威,候振国. TACE联合RFA治疗中期原发性肝癌的疗效及对患者血清GP73、AFP和AFP-L3水平的影响. 临床和实验医学杂志. 2021(13): 1388-1391 .
    24. 金文彪. 肝动脉化疗栓塞联合射频消融在原发性肝癌中的价值. 中国卫生标准管理. 2021(17): 48-51 .
    25. 范隼,钟鹏,巫兆国. 经肝动脉化疗栓塞联合同步射频消融术治疗肝癌的初步临床研究. 吉林医学. 2021(10): 2389-2390 .
    26. 曹昆昆,李晓伟,付志刚,翟健,曲增强,丁宁. 微波消融同步联合经导管动脉化疗栓塞治疗膈下肝细胞癌. 中国介入影像与治疗学. 2021(11): 659-662 .
    27. 卢毅,周任. 肝动脉化疗栓塞联合射频消融治疗原发性小肝癌的临床效果及对患者免疫功能的影响. 广西医学. 2021(18): 2161-2165 .
    28. 何勇. 肝动脉介入化疗栓塞术联合阿帕替尼在晚期肝癌中的应用. 临床医药实践. 2020(03): 181-183 .
    29. 徐蓉,华忠. 肝硬化并发原发性肝癌的流行病学特征、危险因素及相关预防干预对策研究. 中西医结合肝病杂志. 2020(04): 357-359+366 .
    30. 刘峥嵘,俞巍. 肝动脉化疗栓塞术和肝动脉栓塞术治疗肝细胞癌的疗效. 血管与腔内血管外科杂志. 2019(02): 139-143 .

    Other cited types(2)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2022) PDF downloads(381) Cited by(32)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return