[1] |
Chinese Society of Infectious Diseases, Chinese Medical Association, Chinese Society of Infectious Diseases, Chinese Medical Association. Guidelines for the prevention and treatment of chronic hepatitis B(version 2019)[J]. J Clin Hepatol, 2019, 35(12): 2648-2669. DOI: 10.3969/j.issn.1001-5256.2019.12.007.
中华医学会肝病学分会, 中华医学会感染病学分会. 慢性乙型肝炎防治指南(2019年版)[J]. 临床肝胆病杂志, 2019, 35(12): 2648-2669. DOI: 10.3969/j.issn.1001-5256.2019.12.007.
|
[2] |
ZHOU F, ZHOU J, WANG W, et al. Unexpected rapid increase in the burden of NAFLD in China from 2008 to 2018: A systematic review and meta-analysis[J]. Hepatology, 2019, 70(4): 1119-1133. DOI: 10.1002/hep.30702.
|
[3] |
SHI JP, FAN JG, WU R, et al. Prevalence and risk factors of hepatic steatosis and its impact on liver injury in Chinese patients with chronic hepatitis B infection[J]. J Gastroenterol Hepatol, 2008, 23(9): 1419-1425. DOI: 10.1111/j.1440-1746.2008.05531.x.
|
[4] |
JOO EJ, CHANG Y, YEOM JS, et al. Hepatitis B virus infection and decreased risk of nonalcoholic fatty liver disease: A cohort study[J]. Hepatology, 2017, 65(3): 828-835. DOI: 10.1002/hep.28917.
|
[5] |
ZHONG GC, WU YL, HAO FB, et al. Current but not past hepatitis B virus infection is associated with a decreased risk of nonalcoholic fatty liver disease in the Chinese population: A case-control study with propensity score analysis[J]. J Viral Hepat, 2018, 25(7): 842-852. DOI: 10.1111/jvh.12878.
|
[6] |
WANG B, LI W, FANG H, et al. Hepatitis B virus infection is not associated with fatty liver disease: Evidence from a cohort study and functional analysis[J]. Mol Med Rep, 2019, 19(1): 320-326. DOI: 10.3892/mmr.2018.9619.
|
[7] |
XU QH, JIE YS, SHU X, et al. Relationship of fatty liver with HBV infection, hyperlipidemia and abnormal alanine aminotransferase[J]. Chin J Exp Clin Virol, 2009, 23(2): 141-143. DOI: 10.3760/cma.j.issn.1003-9279.2009.02.022.
徐启桓, 揭育胜, 舒欣, 等. 脂肪肝与HBV感染、高脂血症及ALT异常的相关分析[J]. 中华实验和临床病毒学杂志, 2009, 23(2): 141-143. DOI: 10.3760/cma.j.issn.1003-9279.2009.02.022
|
[8] |
DANE DS, CAMERON CH, BRIGGS M. Virus-like particles in serum of patients with Australia-antigen-associated hepatitis[J]. Lancet, 1970, 1(7649): 695-698. DOI: 10.1016/s0140-6736(70)90926-8.
|
[9] |
YAN H, ZHONG G, XU G, et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus[J]. Elife, 2012, 1: e00049. DOI: 10.7554/eLife.00049.
|
[10] |
WANG WX, LI M, WU X, et al. HNF1 is critical for the liver-specific function of HBV enhancer Ⅱ[J]. Res Virol, 1998, 149(2): 99-108. DOI: 10.1016/s0923-2516(98)80085-x.
|
[11] |
LI M, XIE Y, WU X, et al. HNF3 binds and activates the second enhancer, ENⅡ, of hepatitis B virus[J]. Virology, 1995, 214(2): 371-378. DOI: 10.1006/viro.1995.0046.
|
[12] |
CHEN M, HIENG S, QIAN X, et al. Regulation of hepatitis B virus ENI enhancer activity by hepatocyte-enriched transcription factor HNF3[J]. Virology, 1994, 205(1): 127-132. DOI: 10.1006/viro.1994.1627.
|
[13] |
GUIDOTTI LG, EGGERS CM, RANEY AK, et al. In vivo regulation of hepatitis B virus replication by peroxisome proliferators[J]. J Virol, 1999, 73(12): 10377-10386. DOI: 10.1128/JVI.73.12.10377-10386.1999.
|
[14] |
REESE VC, OROPEZA CE, MCLACHLAN A. Independent activation of hepatitis B virus biosynthesis by retinoids, peroxisome proliferators, and bile acids[J]. J Virol, 2013, 87(2): 991-997. DOI: 10.1128/JVI.01562-12.
|
[15] |
TANG H, MCLACHLAN A. Transcriptional regulation of hepatitis B virus by nuclear hormone receptors is a critical determinant of viral tropism[J]. Proc Natl Acad Sci U S A, 2001, 98(4): 1841-1846. DOI: 10.1073/pnas.041479698.
|
[16] |
BARDENS A, DÖRING T, STIELER J, et al. Alix regulates egress of hepatitis B virus naked capsid particles in an ESCRT-independent manner[J]. Cell Microbiol, 2011, 13(4): 602-619. DOI: 10.1111/j.1462-5822.2010.01557.x.
|
[17] |
CHOU SF, TSAI ML, HUANG JY, et al. The dual role of an ESCRT-0 component HGS in HBV transcription and naked capsid secretion[J]. PLoS Pathog, 2015, 11(10): e1005123. DOI: 10.1371/journal.ppat.1005123.
|
[18] |
JIANG B, HIMMELSBACH K, REN H, et al. Subviral hepatitis B virus filaments, like infectious viral particles, are released via multivesicular bodies[J]. J Virol, 2015, 90(7): 3330-3341. DOI: 10.1128/JVI.03109-15.
|
[19] |
BREMER CM, BUNG C, KOTT N, et al. Hepatitis B virus infection is dependent on cholesterol in the viral envelope[J]. Cell Microbiol, 2009, 11(2): 249-260. DOI: 10.1111/j.1462-5822.2008.01250.x.
|
[20] |
ABDUL-WAHED A, GUILMEAU S, POSTIC C. Sweet Sixteenth for ChREBP: Established roles and future goals[J]. Cell Metab, 2017, 26(2): 324-341. DOI: 10.1016/j.cmet.2017.07.004.
|
[21] |
HAMILTON JA, KAMP F. How are free fatty acids transported in membranes? Is it by proteins or by free diffusion through the lipids?[J]. Diabetes, 1999, 48(12): 2255-2269. DOI: 10.2337/diabetes.48.12.2255.
|
[22] |
LUO J, YANG H, SONG BL. Mechanisms and regulation of cholesterol homeostasis[J]. Nat Rev Mol Cell Biol, 2020, 21(4): 225-245. DOI: 10.1038/s41580-019-0190-7.
|
[23] |
BOUCHARD MJ, SCHNEIDER RJ. The enigmatic X gene of hepatitis B virus[J]. J Virol, 2004, 78(23): 12725-12734. DOI: 10.1128/JVI.78.23.12725-12734.2004.
|
[24] |
KIM K, KIM KH, KIM HH, et al. Hepatitis B virus X protein induces lipogenic transcription factor SREBP1 and fatty acid synthase through the activation of nuclear receptor LXRalpha[J]. Biochem J, 2008, 416(2): 219-230. DOI: 10.1042/BJ20081336.
|
[25] |
KIM KH, SHIN HJ, KIM K, et al. Hepatitis B virus X protein induces hepatic steatosis via transcriptional activation of SREBP1 and PPARgamma[J]. Gastroenterology, 2007, 132(5): 1955-1967. DOI: 10.1053/j.gastro.2007.03.039.
|
[26] |
KIM JY, SONG EH, LEE HJ, et al. HBx-induced hepatic steatosis and apoptosis are regulated by TNFR1- and NF-kappaB-dependent pathways[J]. J Mol Biol, 2010, 397(4): 917-931. DOI: 10.1016/j.jmb.2010.02.016.
|
[27] |
PORSTMANN T, SANTOS CR, GRIFFITHS B, et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth[J]. Cell Metab, 2008, 8(3): 224-236. DOI: 10.1016/j.cmet.2008.07.007.
|
[28] |
XIAO CX, YANG XN, HUANG QW, et al. ECHS1 acts as a novel HBsAg-binding protein enhancing apoptosis through the mitochondrial pathway in HepG2 cells[J]. Cancer Lett, 2013, 330(1): 67-73. DOI: 10.1016/j.canlet.2012.11.030.
|
[29] |
OEHLER N, VOLZ T, BHADRA OD, et al. Binding of hepatitis B virus to its cellular receptor alters the expression profile of genes of bile acid metabolism[J]. Hepatology, 2014, 60(5): 1483-1493. DOI: 10.1002/hep.27159.
|
[30] |
SHLOMAI A, PARAN N, SHAUL Y. PGC-1alpha controls hepatitis B virus through nutritional signals[J]. Proc Natl Acad Sci U S A, 2006, 103(43): 16003-16008. DOI: 10.1073/pnas.0607837103.
|
[31] |
CURTIL C, ENACHE LS, RADREAU P, et al. The metabolic sensors FXRα, PGC-1α, and SIRT1 cooperatively regulate hepatitis B virus transcription[J]. FASEB J, 2014, 28(3): 1454-1463. DOI: 10.1096/fj.13-236372.
|
[32] |
KIM HY, CHO HK, KIM HH, et al. Oxygenated derivatives of cholesterol promote hepatitis B virus gene expression through nuclear receptor LXRα activation[J]. Virus Res, 2011, 158(1-2): 55-61. DOI: 10.1016/j.virusres.2011.03.010.
|
[33] |
ZENG J, WU D, HU H, et al. Activation of the liver X receptor pathway inhibits HBV replication in primary human hepatocytes[J]. Hepatology, 2020, 72(6): 1935-1948. DOI: 10.1002/hep.31217.
|
[34] |
DU L, MA Y, LIU M, et al. Peroxisome Proliferators Activated Receptor (PPAR) agonists activate hepatitis B virus replication in vivo[J]. Virol J, 2017, 14(1): 96. DOI: 10.1186/s12985-017-0765-x.
|
[35] |
HU W, WANG X, DING X, et al. MicroRNA-141 represses HBV replication by targeting PPARA[J]. PLoS One, 2012, 7(3): e34165. DOI: 10.1371/journal.pone.0034165.
|
[36] |
WAKUI Y, INOUE J, UENO Y, et al. Inhibitory effect on hepatitis B virus in vitro by a peroxisome proliferator-activated receptor-gamma ligand, rosiglitazone[J]. Biochem Biophys Res Commun, 2010, 396(2): 508-514. DOI: 10.1016/j.bbrc.2010.04.128.
|
[37] |
YOON S, JUNG J, KIM T, et al. Adiponectin, a downstream target gene of peroxisome proliferator-activated receptor γ, controls hepatitis B virus replication[J]. Virology, 2011, 409(2): 290-298. DOI: 10.1016/j.virol.2010.10.024.
|
[38] |
ZHANG Z, PAN Q, DUAN XY, et al. Fatty liver reduces hepatitis B virus replication in a genotype B hepatitis B virus transgenic mice model[J]. J Gastroenterol Hepatol, 2012, 27(12): 1858-1864. DOI: 10.1111/j.1440-1746.2012.07268.x.
|
[39] |
HU D, WANG H, WANG H, et al. Non-alcoholic hepatic steatosis attenuates hepatitis B virus replication in an HBV-immunocompetent mouse model[J]. Hepatol Int, 2018, 12(5): 438-446. DOI: 10.1007/s12072-018-9877-7.
|
[40] |
LIN YL, SHIAO MS, METTLING C, et al. Cholesterol requirement of hepatitis B surface antigen (HBsAg) secretion[J]. Virology, 2003, 314(1): 253-260. DOI: 10.1016/s0042-6822(03)00403-3.
|
[41] |
DOROBANTU C, MACOVEI A, LAZAR C, et al. Cholesterol depletion of hepatoma cells impairs hepatitis B virus envelopment by altering the topology of the large envelope protein[J]. J Virol, 2011, 85(24): 13373-13383. DOI: 10.1128/JVI.05423-11.
|
[42] |
HORIE M, TSUCHIYA Y, HAYASHI M, et al. NB-598: A potent competitive inhibitor of squalene epoxidase[J]. J Biol Chem, 1990, 265(30): 18075-18078. http://europepmc.org/abstract/MED/2211682
|
[43] |
TATEMATSU K, TANAKA Y, SUGIYAMA M, et al. Host sphingolipid biosynthesis is a promising therapeutic target for the inhibition of hepatitis B virus replication[J]. J Med Virol, 2011, 83(4): 587-593. DOI: 10.1002/jmv.21970.
|
[44] |
ZHANG JY, DUAN ZP, ZHANG JL, et al. Research advances in the role of sphingolipids in HCV and HBV life cycles[J]. Chin J Hepatol, 2016, 24(12): 945-947. DOI: 10.3760/cma.j.issn.1007-3418.2016.12.016.
张金艳, 段钟平, 张金兰, 等. 鞘脂在HCV和HBV生命周期中作用的研究进展[J]. 中华肝脏病杂志, 2016, 24(12): 945-947. DOI: 10.3760/cma.j.issn.1007-3418.2016.12.016.
|
[45] |
HUANG Q, LEI H, DING L, et al. Stimulated phospholipid synthesis is key for hepatitis B virus replications[J]. Sci Rep, 2019, 9(1): 12989. DOI: 10.1038/s41598-019-49367-8.
|
[46] |
PARK ES, LEE JH, HONG JH, et al. Phosphatidylcholine alteration identified using MALDI imaging MS in HBV-infected mouse livers and virus-mediated regeneration defects[J]. PLoS One, 2014, 9(8): e103955. DOI: 10.1371/journal.pone.0103955.
|
[47] |
HUANG H, SUN Z, PAN H, et al. Serum metabolomic signatures discriminate early liver inflammation and fibrosis stages in patients with chronic hepatitis B[J]. Sci Rep, 2016, 6: 30853. DOI: 10.1038/srep30853.
|
[48] |
LI H, ZHU W, ZHANG L, et al. The metabolic responses to hepatitis B virus infection shed new light on pathogenesis and targets for treatment[J]. Sci Rep, 2015, 5: 8421. DOI: 10.1038/srep08421.
|
[49] |
GAVILANES F, GONZALEZ-ROS JM, PETERSON DL. Structure of hepatitis B surface antigen. Characterization of the lipid components and their association with the viral proteins[J]. J Biol Chem, 1982, 257(13): 7770-7777. http://www.ncbi.nlm.nih.gov/pubmed/7085648
|
[50] |
OKAMURA H, NIO Y, AKAHORI Y, et al. Fatty acid biosynthesis is involved in the production of hepatitis B virus particles[J]. Biochem Biophys Res Commun, 2016, 475(1): 87-92. DOI: 10.1016/j.bbrc.2016.05.043.
|
[51] |
ESSER K, LUCIFORA J, WETTENGEL J, et al. Lipase inhibitor orlistat prevents hepatitis B virus infection by targeting an early step in the virus life cycle[J]. Antiviral Res, 2018, 151: 4-7. DOI: 10.1016/j.antiviral.2018.01.001.
|