[1] |
DOHERTY J, BAEHRECKE EH. Life, death and autophagy[J]. Nat Cell Biol, 2018, 20(10): 1110-1117. DOI: 10.1038/s41556-018-0201-5.
|
[2] |
BONAM SR, WANG F, MULLER S. Autophagy: A new concept in autoimmunity regulation and a novel therapeutic option[J]. J Autoimmun, 2018, 94: 16-32. DOI: 10.1016/j.jaut.2018.08.009.
|
[3] |
KAUSHIK S, CUERVO AM. The coming of age of chaperone-mediated autophagy[J]. Nat Rev Mol Cell Biol, 2018, 19(6): 365-381. DOI: 10.1038/s41580-018-0001-6.
|
[4] |
ANTONIOLI M, DI RIENZO M, PIACENTINI M, et al. Emerging mechanisms in initiating and terminating autophagy[J]. Trends Biochem Sci, 2017, 42(1): 28-41. DOI: 10.1016/j.tibs.2016.09.008.
|
[5] |
LI CT, ZHAO TJ, HUANG Q. Role of autophagy in islet β cells: A novel target for diabetes' therapy[J]. Chin J Clin Pharmacol Ther, 2020, 25(3): 344-351. DOI: 10.12092 /j.issn.1009-2501.2020.03.016.
李楚婷, 赵天娇, 黄琼. 从自噬在胰岛β细胞中的作用探讨糖尿病治疗的药物靶点[J]. 中国临床药理学与治疗学, 2020, 25(3): 344-351. DOI: 10.12092 /j.issn.1009-2501.2020.03.016.
|
[6] |
SALAZAR G, CULLEN A, HUANG J, et al. SQSTM1/p62 and PPARGC1A/PGC-1alpha at the interface of autophagy and vascular senescence[J]. Autophagy, 2020, 16(6): 1092-1110. DOI: 10.1080/15548627.2019.1659612.
|
[7] |
WATANABE Y, TAGUCHI K, TANAKA M. Ubiquitin, autophagy and neurodegenerative diseases[J]. Cells, 2020, 9(9): 2022. DOI: 10.3390/cells9092022.
|
[8] |
WANG YY, ZHOU C, CHAO X, et al. progress of autophagy and primary hepatocellular carcinoma[J]. Chin J Clin Exp Pathol, 2020, 36(8): 943-946. DOI: 10.13315/j.cnki.cjcep.2020.08.014.
王阳阳, 周铖, 晁旭, 等. 细胞自噬与原发性肝癌相关研究进展[J]. 临床与实验病理学杂志, 2020, 36(8): 943-946. DOI: 10.13315/j.cnki.cjcep.2020.08.014.
|
[9] |
WANG Y, SHI XL. Advances in mechanisms of autophagy in common liver diseases[J]. J Hepatopancreatobiliary Surg, 2019, 31(4): 244-247. DOI: 10.11952/j.issn.1007-1954.2019.04.012.
王玥, 施晓雷. 自噬在常见肝脏疾病中作用机制的研究进展[J]. 肝胆胰外科杂志, 2019, 31(4): 244-247. DOI: 10.11952/j.issn.1007-1954.2019.04.012.
|
[10] |
ESLAM M, NEWSOME PN, SARIN SK, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement[J]. J Hepatol, 2020, 73(1): 202-209. DOI: 10.1016/j.jhep.2020.03.039.
|
[11] |
ZHOU Q, SU J, JI MY. progress of nutritional therapy for fatty liver[J]. China Med Herald, 2020, 17(6): 26-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YYCY202006008.htm
周谦, 苏娟, 季梦遥. 非酒精性脂肪性肝病的治疗研究进展[J]. 中国医药导报, 2020, 17(6): 26-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YYCY202006008.htm
|
[12] |
WU TF, LIAO XH, ZHONG BH. Epidemiology of nonalcoholic fatty liver disease in some regions of China[J]. J Clin Hepatol, 2020, 36(6): 1370-1373. DOI: 10.3969/j.issn.1001-5256.2020.06.039.
吴挺丰, 廖献花, 钟碧慧. 中国部分地区非酒精性脂肪肝病的流行情况[J]. 临床肝胆病杂志, 2020, 36(6): 1370-1373. DOI: 10.3969/j.issn.1001-5256.2020.06.039.
|
[13] |
WANG YH, GAO Y. progress in diagnosis and treatment of non-alcoholic fatty liver disease combinated with type 2 diabetes mellitus[J]. J Jilin Univ(Med Edit), 2020, 46(6): 1324-1331. DOI: 10.13481/j.1671-587x.20200634.
王雨涵, 高影. 非酒精性脂肪性肝病并发2型糖尿病诊断和治疗的研究进展[J]. 吉林大学学报(医学版), 2020, 46(6): 1324-1331. DOI: 10.13481/j.1671-587x.20200634.
|
[14] |
LIU XH, ZHAO Y, LI XX, et al. Regulation of lipophagy for nonalcoholic fatty liver disease[J]. Chem Life, 2020, 40(8): 1309-1313. DOI: 10.13488/j.smhx.20200236.
刘小慧, 赵云, 李晓晓, 等. 脂噬在非酒精性脂肪性肝病中的调控作用[J]. 生命的化学, 2020, 40(8): 1309-1313. DOI: 10.13488/j.smhx.20200236.
|
[15] |
SHI LN, WANG K, DENG YD, et al. Role of lipophagy in the regulation of lipid metabolism and the molecular mechanism[J]. J South Med Univ, 2019, 39(7): 867-874. DOI: 10.12122/j.issn.1673-4254.2019.07.19.
史琳娜, 王珂, 邓玉娣, 等. 脂噬对脂质代谢的调节作用及其分子机制[J]. 南方医科大学学报, 2019, 39(7): 867-874. DOI: 10.12122/j.issn.1673-4254.2019.07.19.
|
[16] |
DING H, GE G, TSENG Y, et al. Hepatic autophagy fluctuates during the development of non-alcoholic fatty liver disease[J]. Ann Hepatol, 2020, 19(5): 516-522. DOI: 10.1016/j.aohep.2020.06.001.
|
[17] |
KOROVILA I, JUNG T, DEUBEL S, et al. Punicalagin attenuates palmitate-induced lipid droplet content by simultaneously improving autophagy in hepatocytes[J]. Mol Nutr Food Res, 2020, 64(20): e2000816. DOI: 10.1002/mnfr.202000816.
|
[18] |
NAJT CP, KHAN SA, HEDEN TD, et al. Lipid droplet-derived monounsaturated fatty acids traffic via PLIN5 to allosterically activate SIRT1[J]. Mol Cell, 2020, 77(4): 810-824.e8. DOI: 10.1016/j.molcel.2019.12.003.
|
[19] |
MA SY, SUN KS, ZHANG M, et al. Disruption of Plin5 degradation by CMA causes lipid homeostasis imbalance in NAFLD[J]. Liver Int, 2020, 40(10): 2427-2438. DOI: 10.1111/liv.14492.
|
[20] |
OGASAWARA Y, CHENG J, TATEMATSU T, et al. Long-term autophagy is sustained by activation of CCTβ3 on lipid droplets[J]. Nat Commun, 2020, 11(1): 4480. DOI: 10.1038/s41467-020-18153-w.
|
[21] |
KANG SW, HAYDAR G, TANIANE C, et al. AMPK activation prevents and reverses drug-induced mitochondrial and hepatocyte injury by promoting mitochondrial fusion and function[J]. PLoS One, 2016, 11(10): e0165638. DOI: 10.1371/journal.pone.0165638.
|
[22] |
HEAD SA, SHI W, ZHAO L, et al. Antifungal drug itraconazole targets VDAC1 to modulate the AMPK/mTOR signaling axis in endothelial cells[J]. Proc Natl Acad Sci U S A, 2015, 112(52): e7276-e7285. DOI: 10.1073/pnas.1512867112.
|
[23] |
ZHU Y, ZHANG C, XU F, et al. System biology analysis reveals the role of voltage-dependent anion channel in mitochondrial dysfunction during non-alcoholic fatty liver disease progression into hepatocellular carcinoma[J]. Cancer Sci, 2020, 111(11): 4288-4302. DOI: 10.1111/cas.14651.
|
[24] |
ZHUANG ST, ZHANG JL, ZOU YQ, et al. Effect of Shihu mixture on autophagy protein of AMPK/TFEB signaling pathway in rats with T2DM-NAFLD[J]. Chin J Exp Med Formul, 2020, 26(24): 53-58. DOI: 10.13422/j.cnki.syfjx.20202006.
庄舒婷, 张家林, 邹玉卿, 等. 石斛合剂对2型糖尿病合并非酒精性脂肪肝大鼠AMPK-TFEB信号通路自噬蛋白的影响[J]. 中国实验方剂学杂志, 2020, 26(24): 53-58. DOI: 10.13422/j.cnki.syfjx.20202006.
|
[25] |
LU W, MEI J, YANG J, et al. ApoE deficiency promotes non-alcoholic fatty liver disease in mice via impeding AMPK/mTOR mediated autophagy[J]. Life Sci, 2020, 252: 117601. DOI: 10.1016/j.lfs.2020.117601.
|
[26] |
WU P, ZHAO J, GUO Y, et al. Ursodeoxycholic acid alleviates nonalcoholic fatty liver disease by inhibiting apoptosis and improving autophagy via activating AMPK[J]. Biochem Biophys Res Commun, 2020, 529(3): 834-838. DOI: 10.1016/j.bbrc.2020.05.128.
|
[27] |
LI D, CUI Y, WANG X, et al. Apple polyphenol extract alleviates lipid accumulation in free-fatty-acid-exposed HepG2 cells via activating autophagy mediated by SIRT1/AMPK signaling[J]. Phytother Res, 2021, 35(3): 1416-1431. DOI: 10.1002/ptr.6902.
|
[28] |
ROHIT S, SANGAM R, BRIJESH S, et al. Hepatic lipid catabolism via PPARαlysosomal crosstalk[J]. Int J Mol Sci, 2020, 21(7): 2391. DOI: 10.3390/ijms21072391.
|
[29] |
XU WJ, FAN JL. Crosstalk between PPARα and FXR in nonalcoholic fatty liver disease[J]. Chem Life, 2020, 40(9): 1500-1506. DOI: 10.13488/j.smhx.20200419.
徐文静, 范江霖. PPARα与FXR通路在非酒精性脂肪肝病中的交互作用[J]. 生命的化学, 2020, 40(9): 1500-1506. DOI: 10.13488/j.smhx.20200419.
|
[30] |
FORD BE, CHACHRA SS, ALSHAWI A, et al. Chronic glucokinase activator treatment activates liver Carbohydrate response element binding protein and improves hepatocyte ATP homeostasis during substrate challenge[J]. Diabetes Obes Metab, 2020, 22(11): 1985-1994. DOI: 10.1111/dom.14111.
|
[31] |
ZHAO T, WU K, HOGSTRAND C, et al. Lipophagy mediated carbohydrate-induced changes of lipid metabolism via oxidative stress, endoplasmic reticulum (ER) stress and ChREBP/PPARγ pathways[J]. Cell Mol Life Sci, 2020, 77(10): 1987-2003. DOI: 10.1007/s00018-019-03263-6.
|
[32] |
LI BH, LIAO SQ, YIN YW, et al. Telmisartan-induced PPARγ activity attenuates lipid accumulation in VSMCs via induction of autophagy[J]. Mol Biol Rep, 2015, 42(1): 179-186. DOI: 10.1007/s11033-014-3757-6.
|
[33] |
ZHANG X, ZHAN Y, LIN W, et al. Smurf1 aggravates non-alcoholic fatty liver disease by stabilizing SREBP-1c in an E3 activity-independent manner[J]. FASEB J, 2020, 34(6): 7631-7643. DOI: 10.1096/fj.201902952RR.
|
[34] |
WANG YJ. Sterol regulatory element binding protein 1c regulates oleic acid-induced hepatoma cell autophagy[D]. Beijing: Capital Medical University, 2016.
王芸姣. 固醇调节元件结合蛋白1c在脂性自噬中的作用及机制探讨[D]. 北京: 首都医科大学, 2016.
|
[35] |
BONHOURE N, BYRNES A, MOIR RD, et al. Loss of the RNA polymerase Ⅲ repressor MAF1 confers obesity resistance[J]. Genes Dev, 2015, 29(9): 934-947. DOI: 10.1101/gad.258350.115.
|
[36] |
ZHU J, CHENG M, ZHAO X. A tRNA-derived fragment (tRF-3001b) aggravates the development of nonalcoholic fatty liver disease by inhibiting autophagy[J]. Life Sci, 2020, 257: 118125. DOI: 10.1016/j.lfs.2020.118125.
|
[37] |
XU J, CAO D, ZHANG D, et al. MicroRNA-1 facilitates hypoxia-induced injury by targeting NOTCH3[J]. J Cell Biochem, 2020, 121(11): 4458-4469. DOI: 10.1002/jcb.29663.
|
[38] |
MENG CY, ZHAO ZQ, BAI R, et al. MicroRNA-22 regulates autophagy and apoptosis in cisplatin resistance of osteosarcoma[J]. Mol Med Rep, 2020, 22(5): 3911-3921. DOI: 10.3892/mmr.2020.11447.
|
[39] |
LI YL, ZHANG XX, YAO JN, et al. ZEB2-AS1 regulates the expression of TAB3 and promotes the development of colon cancer by adsorbing microRNA-188[J]. Eur Rev Med Pharmacol Sci, 2020, 24(8): 4180-4189. DOI: 10.26355/eurrev_202004_20998.
|
[40] |
LIU B, CHAI Y, GUO W, et al. MicroRNA-188 aggravates contrast-induced apoptosis by targeting SRSF7 in novel isotonic contrast-induced acute kidney injury rat models and renal tubular epithelial cells[J]. Ann Transl Med, 2019, 7(16): 378. DOI: 10.21037/atm.2019.07.20.
|
[41] |
LEE K, KIM H, AN K, et al. Replenishment of microRNA-188-5p restores the synaptic and cognitive deficits in 5XFAD Mouse Model of Alzheimer's Disease[J]. Sci Rep, 2016, 6: 34433. DOI: 10.1038/srep34433.
|
[42] |
LI CJ, CHENG P, LIANG MK, et al. MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation[J]. J Clin Invest, 2015, 125(4): 1509-1522. DOI: 10.1172/JCI77716.
|
[43] |
LIU Y, ZHOU X, XIAO Y, et al. miR-188 promotes liver steatosis and insulin resistance via the autophagy pathway[J]. J Endocrinol, 2020, 245(3): 411-423. DOI: 10.1530/JOE-20-0033.
|
[44] |
OU Z, WADA T, GRAMIGNOLI R, et al. MicroRNA hsa-miR-613 targets the human LXRα gene and mediates a feedback loop of LXRα autoregulation[J]. Mol Endocrinol, 2011, 25(4): 584-596. DOI: 10.1210/me.2010-0360.
|
[45] |
HUANG F, LIU H, LEI Z, et al. Long noncoding RNA CCAT1 inhibits miR-613 to promote nonalcoholic fatty liver disease via increasing LXRα transcription[J]. J Cell Physiol, 2020, 235(12): 9819-9833. DOI: 10.1002/jcp.29795.
|
[46] |
KIM YS, NAM HJ, HAN CY, et al. Liver X receptor alpha activation inhibits autophagy and lipophagy in hepatocytes by dysregulating autophagy-related 4B cysteine peptidase and Rab-8B, reducing mitochondrial fuel oxidation[J]. Hepatology, 2021, 73(4): 1307-1326. DOI: 10.1002/hep.31423.
|
[47] |
TANG M, JIANG Y, JIA H, et al. Osteopontin acts as a negative regulator of autophagy accelerating lipid accumulation during the development of nonalcoholic fatty liver disease[J]. Artif Cells Nanomed Biotechnol, 2020, 48(1): 159-168. DOI: 10.1080/21691401.2019.1699822.
|
[48] |
YANG H, XUEFENG Y, SHANDONG W, et al. COX-2 in liver fibrosis[J]. Clin Chim Acta, 2020, 506: 196-203. DOI: 10.1016/j.cca.2020.03.024.
|
[49] |
PALUMBO P, LOMBARDI F, AUGELLO FR, et al. Biological effects of selective COX-2 inhibitor NS398 on human glioblastoma cell lines[J]. Cancer Cell Int, 2020, 20: 167. DOI: 10.1186/s12935-020-01250-7.
|