[1] |
SIEGEL RL, MILLER KD, JEMAL A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1): 7-30. DOI: 10.3322/caac.21590.
|
[2] |
SUNG H, FERLAY J, SIEGEL RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
|
[3] |
CHEN IM, WILLUMSEN N, DEHLENDORFF C, et al. Clinical value of serum hyaluronan and propeptide of type Ⅲ collagen in patients with pancreatic cancer[J]. Int J Cancer, 2020, 146(10): 2913-2922. DOI: 10.1002/ijc.32751.
|
[4] |
DALIN S, SULLIVAN MR, LAU AN, et al. Deoxycytidine release from pancreatic stellate cells promotes gemcitabine resistance[J]. Cancer Res, 2019, 79(22): 5723-5733. DOI: 10.1158/0008-5472.CAN-19-0960.
|
[5] |
ÖHLUND D, HANDLY-SANTANA A, BIFFI G, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer[J]. J Exp Med, 2017, 214(3): 579-596. DOI: 10.1084/jem.20162024.
|
[6] |
GOEHRIG D, NIGRI J, SAMAIN R, et al. Stromal protein βig-h3 reprogrammes tumour microenvironment in pancreatic cancer[J]. Gut, 2019, 68(4): 693-707. DOI: 10.1136/gutjnl-2018-317570.
|
[7] |
YU M, GUAN R, HONG W, et al. Prognostic value of tumor-associated macrophages in pancreatic cancer: A meta-analysis[J]. Cancer Manag Res, 2019, 11: 4041-4058. DOI: 10.2147/CMAR.S196951.
|
[8] |
HENZE J, TACKE F, HARDT O, et al. Enhancing the efficacy of CAR T cells in the tumor microenvironment of pancreatic cancer[J]. Cancers (Basel), 2020, 12(6): 1389. DOI: 10.3390/cancers12061389.
|
[9] |
YIN Z, MA T, HUANG B, et al. Macrophage-derived exosomal microRNA-501-3p promotes progression of pancreatic ductal adenocarcinoma through the TGFBR3-mediated TGF-β signaling pathway[J]. J Exp Clin Cancer Res, 2019, 38(1): 310. DOI: 10.1186/s13046-019-1313-x.
|
[10] |
RICHARDS KE, ZELENIAK AE, FISHEL ML, et al. Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells[J]. Oncogene, 2017, 36(13): 1770-1778. DOI: 10.1038/onc.2016.353.
|
[11] |
RAMANATHAN RK, MCDONOUGH SL, PHILIP PA, et al. Phase IB/Ⅱ randomized study of FOLFIRINOX plus pegylated recombinant human hyaluronidase versus FOLFIRINOX alone in patients with metastatic pancreatic adenocarcinoma: SWOG S1313[J]. J Clin Oncol, 2019, 37(13): 1062-1069. DOI: 10.1200/JCO.18.01295.
|
[12] |
van CUTSEM E, TEMPERO MA, SIGAL D, et al. Randomized phase Ⅲ trial of pegvorhyaluronidase alfa with nab-paclitaxel plus gemcitabine for patients with hyaluronan-high metastatic pancreatic adenocarcinoma[J]. J Clin Oncol, 2020, 38(27): 3185-3194. DOI: 10.1200/JCO.20.00590.
|
[13] |
CHEN X, ZHOU W, LIANG C, et al. Codelivery nanosystem targeting the deep microenvironment of pancreatic cancer[J]. Nano Lett, 2019, 19(6): 3527-3534. DOI: 10.1021/acs.nanolett.9b00374.
|
[14] |
HAN X, LI Y, XU Y, et al. Reversal of pancreatic desmoplasia by re-educating stellate cells with a tumour microenvironment-activated nanosystem[J]. Nat Commun, 2018, 9(1): 3390. DOI: 10.1038/s41467-018-05906-x.
|
[15] |
MIZUTANI Y, KOBAYASHI H, ⅡDA T, et al. Meflin-positive cancer-associated fibroblasts inhibit pancreatic carcinogenesis[J]. Cancer Res, 2019, 79(20): 5367-5381. DOI: 10.1158/0008-5472.CAN-19-0454.
|
[16] |
O'REILLY EM, OH DY, DHANI N, et al. Durvalumab with or without tremelimumab for patients with metastatic pancreatic ductal adenocarcinoma: A phase 2 randomized clinical trial[J]. JAMA Oncol, 2019, 5(10): 1431-1438. DOI: 10.1001/jamaoncol.2019.1588.
|
[17] |
ZAMARIN D, HAMID O, NAYAK-KAPOOR A, et al. Mogamulizumab in combination with durvalumab or tremelimumab in patients with advanced solid tumors: A phase I study[J]. Clin Cancer Res, 2020, 26(17): 4531-4541. DOI: 10.1158/1078-0432.CCR-20-0328.
|
[18] |
TEMPERO M, OH D, MACARULLA T, et al. O-002 - Ibrutinib in combination with nab-paclitaxel and gemcitabine as first-line treatment for patients with metastatic pancreatic adenocarcinoma: Results from the phase 3 RESOLVE study[J]. Ann Oncol, 2019, 30: iv126. DOI: 10.1093/annonc/mdz154.001.
|
[19] |
MA HS, POUDEL B, TORRES ER, et al. A CD40 agonist and PD-1 antagonist antibody reprogram the microenvironment of nonimmunogenic tumors to allow T-cell-mediated anticancer activity[J]. Cancer Immunol Res, 2019, 7(3): 428-442. DOI: 10.1158/2326-6066.CIR-18-0061.
|
[20] |
DU H, HIRABAYASHI K, AHN S, et al. Antitumor responses in the absence of toxicity in solid tumors by targeting B7-H3 via chimeric antigen receptor T cells[J]. Cancer Cell, 2019, 35(2): 221-237. e8. DOI: 10.1016/j.ccell.2019.01.002.
|
[21] |
YAZDANIFAR M, ZHOU R, GROVER P, et al. Overcoming immunological resistance enhances the efficacy of a novel anti-tMUC1-CAR T cell treatment against pancreatic ductal inoma[J]. Cells, 2019, 8(9): 1070. DOI: 10.3390/cells8091070.
|
[22] |
XIE YJ, DOUGAN M, JAILKHANI N, et al. Nanobody-based CAR T cells that target the tumor microenvironment inhibit the growth of solid tumors in immunocompetent mice[J]. Proc Natl Acad Sci U S A, 2019, 116(16): 7624-7631. DOI: 10.1073/pnas.1817147116.
|
[23] |
MA L, DICHWALKAR T, CHANG J, et al. Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor[J]. Science, 2019, 365(6449): 162-168. DOI: 10.1126/science.aav8692.
|
[24] |
ZHOU W, ZHOU Y, CHEN X, et al. Pancreatic cancer-targeting exosomes for enhancing immunotherapy and reprogramming tumor microenvironment[J]. Biomaterials, 2021, 268: 120546. DOI: 10.1016/j.biomaterials.2020.120546.
|