中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 37 Issue 11
Nov.  2021
Turn off MathJax
Article Contents

Role of N6-methyladenosine methylation in liver diseases

DOI: 10.3969/j.issn.1001-5256.2021.11.051
Research funding:

National Natural Science Foundation of China (81973648)

  • Received Date: 2021-04-15
  • Accepted Date: 2021-06-07
  • Published Date: 2021-11-20
  • N6-methyladenosine (m6A) is a chemical modification that exists in a variety of RNAs and is most commonly observed in mRNA. The liver is a vital metabolic and digestive organ in human body, and m6A methylation plays an important role in the physiological and pathological processes of the liver. This article reviews the biological role and potential application value of m6A methylation in liver physiology and liver diseases such as viral hepatitis, nonalcoholic fatty liver disease, liver fibrosis, and hepatocellular carcinoma, and it is pointed out that m6A methylation can regulate related factors and is involved in the development and progression of liver diseases, which provides new ideas and targets for clinical diagnosis and treatment.

     

  • loading
  • [1]
    HUANG H, WENG H, SUN W, et al. Recognition of RNA N(6)- methyladenosine by IGF2BP proteins enhances mRNA stability and translation[J]. Nat Cell Biol, 2018, 20(3): 285-295. DOI: 10.1038/s41556-018-0045-z.
    [2]
    ZHAO BS, WANG X, BEADELL AV, et al. m(6)A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition[J]. Nature, 2017, 542(7642): 475-478. DOI: 10.1038/nature21355.
    [3]
    LIU Z, ZHANG J. Human C-to-U coding RNA editing is largely nonadaptive[J]. Mol Biol Evol, 2018, 35(4): 963-969. DOI: 10.1093/molbev/msy011.
    [4]
    PING XL, SUN BF, WANG L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase[J]. Cell Res, 2014, 24(2): 177-189. DOI: 10.1038/cr.2014.3.
    [5]
    JIA G, FU Y, ZHAO X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nat Chem Biol, 2011, 7(12): 885-887. DOI: 10.1038/nchembio.687.
    [6]
    FU Y, JIA G, PANG X, et al. FTO-mediated formation of N6-hydroxymethyladenosine and N6-formyladenosine in mammalian RNA[J]. Nat Commun, 2013, 4: 1798. DOI: 10.1038/ncomms2822.
    [7]
    SHI H, WANG X, LU Z, et al. YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA[J]. Cell Res, 2017, 27(3): 315-328. DOI: 10.1038/cr.2017.15.
    [8]
    HE S, WANG H, LIU R, et al. mRNA N6-methyladenosine methylation of postnatal liver development in pig[J]. PLoS One, 2017, 12(3): e0173421. DOI: 10.1371/journal.pone.0173421.
    [9]
    NAKANO M, ONDO K, TAKEMOTO S, et al. Methylation of adenosine at the N(6) position post-transcriptionally regulates hepatic P450s expression[J]. Biochem Pharmacol, 2020, 171: 113697. DOI: 10.1016/j.bcp.2019.113697.
    [10]
    JABS S, BITON A, BÉCAVIN C, et al. Impact of the gut microbiota on the m(6)A epitranscriptome of mouse cecum and liver[J]. Nat Commun, 2020, 11(1): 1344. DOI: 10.1038/s41467-020-15126-x.
    [11]
    FUSTIN JM, DOIM, YAMAGUCHI Y, et al. RNA-methylation-dependent RNA processing controls the speed of the circadian clock[J]. Cell, 2013, 155(4): 793-806. DOI: 10.1016/j.cell.2013.10.026.
    [12]
    IMAM H, KHAN M, GOKHALE NS, et al. N6-methyladenosine modification of hepatitis B virus RNA differentially regulates the viral life cycle[J]. Proc Natl Acad Sci U S A, 2018, 115(35): 8829-8834. DOI: 10.1073/pnas.1808319115.
    [13]
    KIM GW, SIDDIQUI A. Hepatitis B virus X protein recruits methyltransferases to affect cotranscriptional N6-methyladenosine modification of viral/host RNAs[J]. Proc Natl Acad Sci U S A, 2021, 118(3). DOI: 10.1073/pnas.2019455118.
    [14]
    GOKHALE NS, MCINTYRE A, MCFADDEN MJ, et al. N6-methyladenosine in flaviviridae viral RNA genomes regulates infection[J]. Cell Host Microbe, 2016, 20(5): 654-665. DOI: 10.1016/j.chom.2016.09.015.
    [15]
    DURBIN AF, WANG C, MARCOTRIGIANO J, et al. RNAs containing modified nucleotides fail to trigger RIG-I conformational changes for innate immune signaling[J]. mBio, 2016, 7(5). DOI: 10.1128/mBio.00833-16.
    [16]
    GOKHALE NS, MCINTYRE A, MATTOCKS MD, et al. Altered m(6)A modification of specific cellular transcripts affects flaviviridae infection[J]. Mol Cell, 2020, 77(3): 542-555. e8. DOI: 10.1016/j.molcel.2019.11.007.
    [17]
    RAO X, LAI L, LI X, et al. N(6) -methyladenosine modification of circular RNA circ-ARL3 facilitates hepatitis B virus-associated hepatocellular carcinoma via sponging miR-1305[J]. IUBMB Life, 2021, 73(2): 408-417. DOI: 10.1002/iub.2438.
    [18]
    KIM GW, SIDDIQUI A. N6-methyladenosine modification of HCV RNA genome regulates cap-independent IRES-mediated translation via YTHDC2 recognition[J]. Proc Natl Acad Sci U S A, 2021, 118(10): e2022024118. DOI: 10.1073/pnas.2022024118.
    [19]
    KLEINER DE, BRUNT EM, VAN NATTA M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease[J]. Hepatology, 2005, 41(6): 1313-1321. DOI: 10.1002/hep.20701.
    [20]
    CHEN X, LUO Y, JIA G, et al. FTO promotes adipogenesis through inhibition of the Wnt/β-catenin signaling pathway in porcine intramuscular preadipocytes[J]. Anim Biotechnol, 2017, 28(4): 268-274. DOI: 10.1080/10495398.2016.1273835.
    [21]
    KANG H, ZHANG Z, YU L, et al. FTO reduces mitochondria and promotes hepatic fat accumulation through RNA demethylation[J]. J Cell Biochem, 2018, 119(7): 5676-5685. DOI: 10.1002/jcb.26746.
    [22]
    MERKESTEIN M, LABER S, MCMURRAY F, et al. FTO influences adipogenesis by regulating mitotic clonal expansion[J]. Nat Commun, 2015, 6: 6792. DOI: 10.1038/ncomms7792.
    [23]
    WU R, LIU Y, YAO Y, et al. FTO regulates adipogenesis by controlling cell cycle progression via m(6)A-YTHDF2 dependent mechanism[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2018, 1863(10): 1323-1330. DOI: 10.1016/j.bbalip.2018.08.008.
    [24]
    WANG X, ZHU L, CHEN J, et al. mRNA m6A methylation downregulates adipogenesis in porcine adipocytes[J]. Biochem Biophys Res Commun, 2015, 459(2): 201-207. DOI: 10.1016/j.bbrc.2015.02.048.
    [25]
    XIE W, MA LL, XU YQ, et al. METTL3 inhibits hepatic insulin sensitivity via N6-methyladenosine modification of Fasn mRNA and promoting fatty acid metabolism[J]. Biochem Biophys Res Commun, 2019, 518(1): 120-126. DOI: 10.1016/j.bbrc.2019.08.018.
    [26]
    CHEN J, ZHOU X, WU W, et al. FTO-dependent function of N6- methyladenosine is involved in the hepatoprotective effects of betaine on adolescent mice[J]. J Physiol Biochem, 2015, 71(3): 405-413. DOI: 10.1007/s13105-015-0420-1.
    [27]
    ZHOU X, CHEN J, CHEN J, et al. The beneficial effects of betaine on dysfunctional adipose tissue and N6-methyladenosine mRNA methylation requires the AMP-activated protein kinase α1 subunit[J]. J Nutr Biochem, 2015, 26(12): 1678-1684. DOI: 10.1016/j.jnutbio.2015.08.014.
    [28]
    LU N, LI X, YU J, et al. Curcumin attenuates lipopolysaccharide-induced hepatic lipid metabolism disorder by modification of m(6)A RNA methylation in piglets[J]. Lipids, 2018, 53(1): 53-63. DOI: 10.1002/lipd.12023.
    [29]
    LIU XY, LIU RX, HOU F, et al. Fibronectin expression is critical for liver fibrogenesis in vivo and inïvitro[J]. Mol Med Rep, 2016, 14(4): 3669-3675. DOI: 10.3892/mmr.2016.5673.
    [30]
    CUI Z, HUANG N, LIU L, et al. Dynamic analysis of m6A methylation spectroscopy during progression and reversal of hepatic fibrosis[J]. Epigenomics, 2020, 12(19): 1707-1723. DOI: 10.2217/epi-2019-0365.
    [31]
    ZHU Y, PAN X, DU N, et al. ASIC1a regulates miR-350/SPRY2 by N(6) -methyladenosine to promote liver fibrosis[J]. FASEB J, 2020, 34(11): 14371-14388. DOI: 10.1096/fj.202001337R.
    [32]
    BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492.
    [33]
    CHEN M, WEI L, LAW CT, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2[J]. Hepatology, 2018, 67(6): 2254-2270. DOI: 10.1002/hep.29683.
    [34]
    MA JZ, YANG F, ZHOU CC, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N(6) -methyladenosine-dependent primary MicroRNA processing[J]. Hepatology, 2017, 65(2): 529-543. DOI: 10.1002/hep.28885.
    [35]
    YANG Z, LI J, FENG G, et al. MicroRNA-145 modulates N(6)-methyladenosine levels by targeting the 3'-untranslated mRNA region of the N(6)-methyladenosine binding YTH domain family 2 protein[J]. J Biol Chem, 2017, 292(9): 3614- 3623. DOI: 10.1074/jbc.M116.749689.
    [36]
    LI J, ZHU L, SHI Y, et al. m6A demethylase FTO promotes hepatocellular carcinoma tumorigenesis via mediating PKM2 demethylation[J]. Am J Transl Res, 2019, 11(9): 6084-6092.
    [37]
    CHEN Y, ZHAO Y, CHEN J, et al. ALKBH5 suppresses malignancy of hepatocellular carcinoma via m(6)A-guided epigenetic inhibition of LYPD1[J]. Mol Cancer, 2020, 19(1): 123. DOI: 10.1186/s12943-020-01239-w.
    [38]
    WU X, ZHANG X, TAO L, et al. Prognostic value of an m6A RNA methylation regulator-based signature in patients with hepatocellular carcinoma[J]. Biomed Res Int, 2020, 2020: 2053902. DOI: 10.1155/2020/2053902.
    [39]
    LIN Z, NIU Y, WAN A, et al. RNA m(6) A methylation regulates sorafenib resistance in liver cancer through FOXO3-mediated autophagy[J]. EMBO J, 2020, 39(12): e103181. DOI: 10.15252/embj.2019103181.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (596) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return