[1] |
GRØNBÆK L, VILSTRUP H, JEPSEN P. Autoimmune hepatitis in Denmark: Incidence, prevalence, prognosis, and causes of death. A nationwide registry-based cohort study[J]. J Hepatol, 2014, 60(3): 612-617. DOI: 10.1016/j.jhep.2013.10.020.
|
[2] |
BISCHOFF S, YESMEMBETOV K, ANTONI C, et al. Autoimmune Hepatitis: A review of established and evolving treatments[J]. J Gastrointestin Liver Dis, 2020, 29(3): 429-443. DOI: 10.15403/jgld-2667.
|
[3] |
European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Autoimmune hepatitis[J]. J Hepatol, 2015, 63(4): 971-1004. DOI: 10.1016/j.jhep.2015.06.030.
|
[4] |
MACK CL, ADAMS D, ASSIS DN, et al. Diagnosis and management of autoimmune hepatitis in adults and children: 2019 practice guidance and guidelines from the American Association for the Study of Liver Diseases[J]. Hepatology, 2020, 72(2): 671-722. DOI: 10.1002/hep.31065.
|
[5] |
WANG G, TANAKA A, ZHAO H, et al. The Asian Pacific Association for the Study of the Liver clinical practice guidance: The diagnosis and management of patients with autoimmune hepatitis[J]. Hepatol Int, 2021, 15(2): 223-257. DOI: 10.1007/s12072-021-10170-1.
|
[6] |
YEOMAN AD, WESTBROOK RH, ZEN Y, et al. Early predictors of corticosteroid treatment failure in icteric presentations of autoimmune hepatitis[J]. Hepatology, 2011, 53(3): 926-934. DOI: 10.1002/hep.24141.
|
[7] |
van GERVEN NM, VERWER BJ, WITTE BI, et al. Relapse is almost universal after withdrawal of immunosuppressive medication in patients with autoimmune hepatitis in remission[J]. J Hepatol, 2013, 58(1): 141-147. DOI: 10.1016/j.jhep.2012.09.009.
|
[8] |
DIESTELHORST J, JUNGE N, JONIGK D, et al. Baseline IL-2 and the AIH score can predict the response to standard therapy in paediatric autoimmune hepatitis[J]. Sci Rep, 2018, 8(1): 419. DOI: 10.1038/s41598-017-18818-5.
|
[9] |
ROUAS R, FAYYAD-KAZAN H, EL ZEIN N, et al. Human natural Treg microRNA signature: Role of microRNA-31 and microRNA-21 in FOXP3 expression[J]. Eur J Immunol, 2009, 39(6): 1608-1618. DOI: 10.1002/eji.200838509.
|
[10] |
LIU Y, CHEN H, HAO J, et al. Characterization and functional prediction of the microRNAs differentially expressed in a mouse model of concanavalin A-induced autoimmune hepatitis[J]. Int J Med Sci, 2020, 17(15): 2312-2327. DOI: 10.7150/ijms.47766.
|
[11] |
TU H, CHEN D, CAI C, et al. MicroRNA-143-3p attenuated development of hepatic fibrosis in autoimmune hepatitis through regulation of TAK1 phosphorylation[J]. J Cell Mol Med, 2020, 24(2): 1256-1267. DOI: 10.1111/jcmm.14750.
|
[12] |
MIGITA K, KOMORI A, KOZURU H, et al. Circulating microRNA profiles in patients with type-1 autoimmune hepatitis[J]. PLoS One, 2015, 10(11): e0136908. DOI: 10.1371/journal.pone.0136908.
|
[13] |
CZAJA AJ. Emerging therapeutic biomarkers of autoimmune hepatitis and their impact on current and future management[J]. Expert Rev Gastroenterol Hepatol, 2018, 12(6): 547-564. DOI: 10.1080/17474124.2018.1453356.
|
[14] |
KUNO A, IKEHARA Y, TANAKA Y, et al. A serum "sweet-doughnut" protein facilitates fibrosis evaluation and therapy assessment in patients with viral hepatitis[J]. Sci Rep, 2013, 3: 1065. DOI: 10.1038/srep01065.
|
[15] |
URA K, FURUSYO N, OGAWA E, et al. Serum WFA(+) -M2BP is a non-invasive liver fibrosis marker that can predict the efficacy of direct-acting anti-viral-based triple therapy for chronic hepatitis C[J]. Aliment Pharmacol Ther, 2016, 43(1): 114-124. DOI: 10.1111/apt.13431.
|
[16] |
UMEMURA T, JOSHITA S, SEKIGUCHI T, et al. Serum wisteria floribunda agglutinin-positive mac-2-binding protein level predicts liver fibrosis and prognosis in primary biliary cirrhosis[J]. Am J Gastroenterol, 2015, 110(6): 857-864. DOI: 10.1038/ajg.2015.118.
|
[17] |
NISHIKAWA H, ENOMOTO H, IWATA Y, et al. Clinical significance of serum Wisteria floribunda agglutinin positive Mac-2-binding protein level and high-sensitivity C-reactive protein concentration in autoimmune hepatitis[J]. Hepatol Res, 2016, 46(7): 613-621. DOI: 10.1111/hepr.12596.
|
[18] |
BONGARZONE S, SAVICKAS V, LUZI F, et al. Targeting the Receptor for Advanced Glycation Endproducts (RAGE): A medicinal chemistry perspective[J]. J Med Chem, 2017, 60(17): 7213-7232. DOI: 10.1021/acs.jmedchem.7b00058.
|
[19] |
HUDSON BI, LIPPMAN ME. Targeting RAGE signaling in inflammatory disease[J]. Annu Rev Med, 2018, 69: 349-364. DOI: 10.1146/annurev-med-041316-085215.
|
[20] |
WU R, LIU Y, YAN R, et al. Assessment of EN-RAGE, sRAGE and EN-RAGE/sRAGE as potential biomarkers in patients with autoimmune hepatitis[J]. J Transl Med, 2020, 18(1): 384. DOI: 10.1186/s12967-020-02556-w.
|
[21] |
CHEN YY, JEFFERY HC, HUNTER S, et al. Human intrahepatic regulatory T cells are functional, require IL-2 from effector cells for survival, and are susceptible to Fas ligand-mediated apoptosis[J]. Hepatology, 2016, 64(1): 138-150. DOI: 10.1002/hep.28517.
|
[22] |
HUANG H, DENG Z. Adoptive transfer of regulatory T cells stimulated by Allogeneic Hepatic Stellate Cells mitigates liver injury in mice with concanavalin A-induced autoimmune hepatitis[J]. Biochem Biophys Res Commun, 2019, 512(1): 14-21. DOI: 10.1016/j.bbrc.2019.02.147.
|
[23] |
MATAKI N, KIKUCHI K, KAWAI T, et al. Expression of PD-1, PD-L1, and PD-L2 in the liver in autoimmune liver diseases[J]. Am J Gastroenterol, 2007, 102(2): 302-312. DOI: 10.1111/j.1572-0241.2006.00948.x.
|
[24] |
XIONG KG, KE KY, CHEN LF, et al. The relationship between programmed death 1 and inflammatory response in autoimmune hepatitis[J]. Chin J Hepatol, 2017, 25(4): 263-267. DOI: 10.3760/cma.j.issn.1007-3418.2017.04.006.
熊克宫, 柯坤宇, 陈丽芳, 等. 自身免疫性肝炎患者肝内程序性死亡受体1高表达与肝脏炎症活动相关[J]. 中华肝脏病杂志, 2017, 25(4): 263-267. DOI: 10.3760/cma.j.issn.1007-3418.2017.04.006.
|
[25] |
AGINA HA, EHSAN NA, ABD-ELAZIZ TA, et al. Hepatic expression of programmed death-1 (PD-1) and its ligand, PD-L1, in children with autoimmune hepatitis: Relation to treatment response[J]. Clin Exp Hepatol, 2019, 5(3): 256-264. DOI: 10.5114/ceh.2019.87642.
|
[26] |
AARSLEV K, DIGE A, GREISEN SR, et al. Soluble programmed death-1 levels are associated with disease activity and treatment response in patients with autoimmune hepatitis[J]. Scand J Gastroenterol, 2017, 52(1): 93-99. DOI: 10.1080/00365521.2016.1233576.
|
[27] |
MATSUMOTO K, MIYAKE Y, MATSUSHITA H, et al. Anti-programmed cell death-1 antibody as a new serological marker for type 1 autoimmune hepatitis[J]. J Gastroenterol Hepatol, 2014, 29(1): 110-115. DOI: 10.1111/jgh.12340.
|
[28] |
BREWER S, NAIR-GILL E, WEI B, et al. Epithelial uptake of[18F]1-(2'-deoxy-2'-arabinofuranosyl) cytosine indicates intestinal inflammation in mice[J]. Gastroenterology, 2010, 138(4): 1266-1275. DOI: 10.1053/j.gastro.2010.01.003.
|
[29] |
SALAS JR, CHEN BY, WONG A, et al. (18)F-FAC PET selectively images liver-infiltrating CD4 and CD8 T Cells in a mouse model of autoimmune hepatitis[J]. J Nucl Med, 2018, 59(10): 1616-1623. DOI: 10.2967/jnumed.118.210328.
|
[30] |
European Association for Study of Liver; Asociacion Latinoamericana para el Estudio del Higado. EASL-ALEH Clinical Practice Guidelines: Non-invasive tests for evaluation of liver disease severity and prognosis[J]. J Hepatol, 2015, 63(1): 237-264. DOI: 10.1016/j.jhep.2015.04.006.
|
[31] |
YANG Q, LIU HE, YOU J, et al. Noninvasive diagnotisc models for chronic hepatitis B liver fibrosis[J]. J Clin Hepatol, 2021, 37(10): 113-117. DOI: 10.3969/j.issn.1001-5256.2021.10.
杨琴, 刘怀鄂, 游晶, 等. 慢性乙型肝炎肝纤维化的无创诊断模型[J]. 临床肝胆病杂志, 2021, 37(10): 113-117. DOI: 10.3969/j.issn.1001-5256.2021.10.
|
[32] |
MAHMUD N, DOSHI SD, FORDE KA, et al. Transient elastography reliably estimates liver fibrosis in autoimmune hepatitis[J]. Clin Exp Hepatol, 2019, 5(3): 244-249. DOI: 10.5114/ceh.2019.87639.
|
[33] |
WU S, YANG Z, ZHOU J, et al. Systematic review: Diagnostic accuracy of non-invasive tests for staging liver fibrosis in autoimmune hepatitis[J]. Hepatol Int, 2019, 13(1): 91-101. DOI: 10.1007/s12072-018-9907-5.
|
[34] |
GUO L, ZHENG L, HU L, et al. Transient elastography (FibroScan) performs better than non-invasive markers in assessing liver fibrosis and cirrhosis in autoimmune hepatitis patients[J]. Med Sci Monit, 2017, 23: 5106-5112. DOI: 10.12659/msm.907300.
|
[35] |
HARTL J, EHLKEN H, SEBODE M, et al. Usefulness of biochemical remission and transient elastography in monitoring disease course in autoimmune hepatitis[J]. J Hepatol, 2018, 68(4): 754-763. DOI: 10.1016/j.jhep.2017.11.020.
|
[36] |
JANIK MK, KRUK B, SZCZEPANKIEWICZ B, et al. Measurement of liver and spleen stiffness as complementary methods for assessment of liver fibrosis in autoimmune hepatitis[J]. Liver Int, 2021, 41(2): 348-356. DOI: 10.1111/liv.14726.
|
[37] |
LEFEBVRE T, WARTELLE-BLADOU C, WONG P, et al. Prospective comparison of transient, point shear wave, and magnetic resonance elastography for staging liver fibrosis[J]. Eur Radiol, 2019, 29(12): 6477-6488. DOI: 10.1007/s00330-019-06331-4.
|
[38] |
MENDIZABAL M, MARCIANO S, VIDELA MG, et al. Fulminant presentation of autoimmune hepatitis: Clinical features and early predictors of corticosteroid treatment failure[J]. Eur J Gastroenterol Hepatol, 2015, 27(6): 644-648. DOI: 10.1097/MEG.0000000000000353.
|
[39] |
ZIZZO AN, JIMENEZ-RIVERA C, KIM J, et al. A national retrospective study of paediatric end-stage liver disease as a predictor of change to second-line therapy in children with autoimmune hepatitis[J]. Liver Int, 2017, 37(10): 1562-1570. DOI: 10.1111/liv.13387.
|
[40] |
BIEWENGA M, INDERSON A, TUSHUIZEN ME, et al. Early predictors of short-term prognosis in acute and acute severe autoimmune hepatitis[J]. Liver Transpl, 2020, 26(12): 1573-1581. DOI: 10.1002/lt.25906.
|