中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 38 Issue 4
Apr.  2022
Turn off MathJax
Article Contents

Mechanism of action of ferroptosis in cholangiocarcinoma

DOI: 10.3969/j.issn.1001-5256.2022.04.043
Research funding:

National Natural Science Foundation of China (81972606);

Shandong Provincial Natural Science Foundation of China (ZR2019MH005)

More Information
  • Corresponding author: YANG Zhen, uclnn@hotmail.com(ORCID: 0000-0003-2199-7789)
  • Received Date: 2021-08-11
  • Accepted Date: 2021-09-22
  • Published Date: 2022-04-20
  • The incidence and mortality rates of cholangiocarcinoma (CCA) are increasing constantly, and it is of great importance to explore new therapeutic targets. Ferroptosis, a unique pattern of cell death caused by iron-dependent cellular oxidative injury, is closely associated with iron metabolism and oxidative stress imbalance in cancer and has become a research hotspot in the field of tumor. This article introduces the mechanism of ferroptosis and the research advances in ferroptosis involved in the development and progression of CCA, and it is pointed out that the regulatory mechanism of ferroptosis has an important clinical value in the malignant progression of CCA.

     

  • loading
  • [1]
    DIXON SJ, LEMBERG KM, LAMPRECHT MR, et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. DOI: 10.1016/j.cell.2012.03.042.
    [2]
    YAMADA N, KARASAWA T, KIMURA H, et al. Ferroptosis driven by radical oxidation of n-6 polyunsaturated fatty acids mediates acetaminophen-induced acute liver failure[J]. Cell Death Dis, 2020, 11(2): 144. DOI: 10.1038/s41419-020-2334-2.
    [3]
    LI J, CAO F, YIN HL, et al. Ferroptosis: Past, present and future[J]. Cell Death Dis, 2020, 11(2): 88. DOI: 10.1038/s41419-020-2298-2.
    [4]
    XU X, LAI Y, HUA ZC. Apoptosis and apoptotic body: Disease message and therapeutic target potentials[J]. Biosci Rep, 2019, 39(1): BSR20180992. DOI: 10.1042/BSR20180992.
    [5]
    GALLUZZI L, GREEN DR. Autophagy-independent functions of the autophagy machinery[J]. Cell, 2019, 177(7): 1682-1699. DOI: 10.1016/j.cell.2019.05.026.
    [6]
    LEE H, ZANDKARIMI F, ZHANG Y, et al. Energy-stress-mediated AMPK activation inhibits ferroptosis[J]. Nat Cell Biol, 2020, 22(2): 225-234. DOI: 10.1038/s41556-020-0461-8.
    [7]
    CHEN X, KANG R, KROEMER G, et al. Broadening horizons: The role of ferroptosis in cancer[J]. Nat Rev Clin Oncol, 2021, 18(5): 280-296. DOI: 10.1038/s41571-020-00462-0.
    [8]
    ZHANG FY, ADILA·YKP, ZHAO JM, et al. Mechanism of ferroptosis and its role in liver diseases[J]. J Clin Hepatol, 2021, 37(6): 1454-1458. DOI: 10.3969/j.issn.1001-5256.2021.06.049.

    张飞宇, 阿迪拉·亚克普, 赵金明, 等. 铁死亡的发生机制及在肝脏疾病中的作用[J]. 临床肝胆病杂志, 2021, 37(6): 1454-1458. DOI: 10.3969/j.issn.1001-5256.2021.06.049.
    [9]
    DIXON SJ, WINTER GE, MUSAVI LS, et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death[J]. ACS Chem Biol, 2015, 10(7): 1604-1609. DOI: 10.1021/acschembio.5b00245.
    [10]
    FEI W, CHEN D, TANG H, et al. Targeted GSH-exhausting and hydroxyl radical self-producing manganese-silica nanomissiles for MRI guided ferroptotic cancer therapy[J]. Nanoscale, 2020, 12(32): 16738-16754. DOI: 10.1039/d0nr02396e.
    [11]
    BANNING A, BRIGELIUS-FLOHÉ R. NF-kappaB, Nrf2, and HO-1 interplay in redox-regulated VCAM-1 expression[J]. Antioxid Redox Signal, 2005, 7(7-8): 889-899. DOI: 10.1089/ars.2005.7.889.
    [12]
    YANG WS, SRIRAMARATNAM R, WELSCH ME, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156(1-2): 317-331. DOI: 10.1016/j.cell.2013.12.010.
    [13]
    JIANG L, KON N, LI T, et al. Ferroptosis as a p53-mediated activity during tumour suppression[J]. Nature, 2015, 520(7545): 57-62. DOI: 10.1038/nature14344.
    [14]
    SATO M, KUSUMI R, HAMASHIMA S, et al. The ferroptosis inducer erastin irreversibly inhibits system xc- and synergizes with cisplatin to increase cisplatin's cytotoxicity in cancer cells[J]. Sci Rep, 2018, 8(1): 968. DOI: 10.1038/s41598-018-19213-4.
    [15]
    CHEN D, TAVANA O, CHU B, et al. NRF2 is a major target of ARF in p53-independent tumor suppression[J]. Mol Cell, 2017, 68(1): 224-232. e4. DOI: 10.1016/j.molcel.2017.09.009.
    [16]
    SHIMADA K, SKOUTA R, KAPLAN A, et al. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis[J]. Nat Chem Biol, 2016, 12(7): 497-503. DOI: 10.1038/nchembio.2079.
    [17]
    SILVA I, RAUSCH V, PECCERELLA T, et al. Hypoxia enhances H2O2-mediated upregulation of hepcidin: Evidence for NOX4-mediated iron regulation[J]. Redox Biol, 2018, 16: 1-10. DOI: 10.1016/j.redox.2018.02.005.
    [18]
    JIA F, SONG N, WANG W, et al. High dietary iron supplement induces the nigrostriatal dopaminergic neurons lesion in transgenic mice expressing mutant A53T human alpha-synuclein[J]. Front Aging Neurosci, 2018, 10: 97. DOI: 10.3389/fnagi.2018.00097.
    [19]
    SUN X, OU Z, XIE M, et al. HSPB1 as a novel regulator of ferroptotic cancer cell death[J]. Oncogene, 2015, 34(45): 5617-5625. DOI: 10.1038/onc.2015.32.
    [20]
    SUN X, OU Z, CHEN R, et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells[J]. Hepatology, 2016, 63(1): 173-184. DOI: 10.1002/hep.28251.
    [21]
    YANG M, LI X, LI H, et al. Baicalein inhibits RLS3-induced ferroptosis in melanocytes[J]. Biochem Biophys Res Commun, 2021, 561: 65-72. DOI: 10.1016/j.bbrc.2021.05.010.
    [22]
    ASSAILY W, RUBINGER DA, WHEATON K, et al. ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress[J]. Mol Cell, 2011, 44(3): 491-501. DOI: 10.1016/j.molcel.2011.08.038.
    [23]
    ZHANG Y, FENG X, ZHANG J, et al. Iron regulatory protein 2 is a suppressor of mutant p53 in tumorigenesis[J]. Oncogene, 2019, 38(35): 6256-6269. DOI: 10.1038/s41388-019-0876-5.
    [24]
    CHANG HW, LEE M, LEE YS, et al. p53-dependent glutamine usage determines susceptibility to oxidative stress in radioresistant head and neck cancer cells[J]. Cell Signal, 2021, 77: 109820. DOI: 10.1016/j.cellsig.2020.109820.
    [25]
    TSAI TF, CHEN PC, LIN YC, et al. Miconazole contributes to NRF2 activation by noncanonical P62-KEAP1 pathway in bladder cancer cells[J]. Drug Des Devel Ther, 2020, 14: 1209-1218. DOI: 10.2147/DDDT.S227892.
    [26]
    SUN Y, HE L, WANG T, et al. Activation of p62-Keap1-Nrf2 pathway protects 6-hydroxydopamine-induced ferroptosis in dopaminergic cells[J]. Mol Neurobiol, 2020, 57(11): 4628-4641. DOI: 10.1007/s12035-020-02049-3.
    [27]
    DOLL S, FREITAS FP, SHAH R, et al. FSP1 is a glutathione-independent ferroptosis suppressor[J]. Nature, 2019, 575(7784): 693-698. DOI: 10.1038/s41586-019-1707-0.
    [28]
    BERSUKER K, HENDRICKS JM, LI Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature, 2019, 575(7784): 688-692. DOI: 10.1038/s41586-019-1705-2.
    [29]
    GAO M, YI J, ZHU J, et al. Role of mitochondria in ferroptosis[J]. Mol Cell, 2019, 73(2): 354-363. e3. DOI: 10.1016/j.molcel.2018.10.042.
    [30]
    BANALES JM, CARDINALE V, CARPINO G, et al. Expert consensus document: Cholangiocarcinoma: Current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA)[J]. Nat Rev Gastroenterol Hepatol, 2016, 13(5): 261-280. DOI: 10.1038/nrgastro.2016.51.
    [31]
    WEIGT J, MALFERTHEINER P. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer[J]. Expert Rev Gastroenterol Hepatol, 2010, 4(4): 395-397. DOI: 10.1586/egh.10.45.
    [32]
    HAN JY, AHN KS, BAEK WK, et al. Usefulness of bile as a biomarker via ferroptosis and cysteine prenylation in cholangiocarcinoma; role of diagnosis and differentiation from benign biliary disease[J]. Surg Oncol, 2020, 34: 174-181. DOI: 10.1016/j.suronc.2020.04.019.
    [33]
    MOHR R, ÖZDIRIK B, KNORR J, et al. In vivo models for cholangiocarcinoma-what can we learn for human disease?[J]. Int J Mol Sci, 2020, 21(14): 4993. DOI: 10.3390/ijms21144993.
    [34]
    PARK JH, PYUN WY, PARK HW. Cancer metabolism: Phenotype, signaling and therapeutic targets[J]. Cells, 2020, 9(10): 2038. DOI: 10.3390/cells9102308.
    [35]
    KIRTONIA A, SETHI G, GARG M. The multifaceted role of reactive oxygen species in tumorigenesis[J]. Cell Mol Life Sci, 2020, 77(22): 4459-4483. DOI: 10.1007/s00018-020-03536-5.
    [36]
    GANZ T. Systemic iron homeostasis[J]. Physiol Rev, 2013, 93(4): 1721-1741. DOI: 10.1152/physrev.00008.2013.
    [37]
    MANCINELLI R, CUTONE A, ROSA L, et al. Different iron-handling in inflamed small and large cholangiocytes and in small and large-duct type intrahepatic cholangiocarcinoma[J]. Eur J Histochem, 2020, 64(4): 3156. DOI: 10.4081/ejh.2020.3156.
    [38]
    THANAN R, OIKAWA S, YONGVANIT P, et al. Inflammation-induced protein carbonylation contributes to poor prognosis for cholangiocarcinoma[J]. Free Radic Biol Med, 2012, 52(8): 1465-1472. DOI: 10.1016/j.freeradbiomed.2012.01.018.
    [39]
    JAMNONGKAN W, THANAN R, TECHASEN A, et al. Upregulation of transferrin receptor-1 induces cholangiocarcinoma progression via induction of labile iron pool[J]. Tumour Biol, 2017, 39(7): 1010428317717655. DOI: 10.1177/1010428317717655.
    [40]
    TRAN KT, COLEMAN HG, MCCAIN RS, et al. Serum biomarkers of iron status and risk of primary liver cancer: A systematic review and meta-analysis[J]. Nutr Cancer, 2019, 71(8): 1365-1373. DOI: 10.1080/01635581.2019.1609053.
    [41]
    CHEN GQ, BENTHANI FA, WU J, et al. Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis[J]. Cell Death Differ, 2020, 27(1): 242-254. DOI: 10.1038/s41418-019-0352-3.
    [42]
    MA B, MENG H, TIAN Y, et al. Distinct clinical and prognostic implication of IDH1/2 mutation and other most frequent mutations in large duct and small duct subtypes of intrahepatic cholangiocarcinoma[J]. BMC Cancer, 2020, 20(1): 318. DOI: 10.1186/s12885-020-06804-6.
    [43]
    NABESHIMA T, HAMADA S, TAGUCHI K, et al. Keap1 deletion accelerates mutant K-ras/p53-driven cholangiocarcinoma[J]. Am J Physiol Gastrointest Liver Physiol, 2020, 318(3): g419-g427. DOI: 10.1152/ajpgi.00296.2019.
    [44]
    YE Z, HU Q, ZHUO Q, et al. Abrogation of ARF6 promotes RSL3-induced ferroptosis and mitigates gemcitabine resistance in pancreatic cancer cells[J]. Am J Cancer Res, 2020, 10(4): 1182-1193.
    [45]
    LEE J, YOU JH, SHIN D, et al. Inhibition of glutaredoxin 5 predisposes cisplatin-resistant head and neck cancer cells to ferroptosis[J]. Theranostics, 2020, 10(17): 7775-7786. DOI: 10.7150/thno.46903.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (1118) PDF downloads(126) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return