[1] |
FERLAY J, COLOMBET M, SOERJOMATARAM I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods[J]. Int J Cancer, 2019, 144(8): 1941-1953. DOI: 10.1002/ijc.31937.
|
[2] |
AHN DH, RAMANATHAN RK, BEKAII-SAAB T. Emerging therapies and future directions in targeting the tumor stroma and immune system in the treatment of pancreatic adenocarcinoma[J]. Cancers (Basel), 2018, 10(6): 193. DOI: 10.3390/cancers10060193.
|
[3] |
SIEGEL RL, MILLER KD, FUCHS HE, et al. Cancer statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33. DOI: 10.3322/caac.21654.
|
[4] |
LAFARO KJ, MELSTROM LG. The paradoxical web of pancreatic cancer tumor microenvironment[J]. Am J Pathol, 2019, 189(1): 44-57. DOI: 10.1016/j.ajpath.2018.09.009.
|
[5] |
ERKAN M, HAUSMANN S, MICHALSKI CW, et al. The role of stroma in pancreatic cancer: Diagnostic and therapeutic implications[J]. Nat Rev Gastroenterol Hepatol, 2012, 9(8): 454-467. DOI: 10.1038/nrgastro.2012.115.
|
[6] |
VEENSTRA VL, GARCIA-GARIJO A, van LAARHOVEN HW, et al. Extracellular influences: Molecular subclasses and the microenvironment in pancreatic cancer[J]. Cancers (Basel), 2018, 10(2): 34. DOI: 10.3390/cancers10020034.
|
[7] |
LIANG C, SHI S, MENG Q, et al. Complex roles of the stroma in the intrinsic resistance to gemcitabine in pancreatic cancer: Where we are and where we are going[J]. Exp Mol Med, 2017, 49(12): e406. DOI: 10.1038/emm.2017.255.
|
[8] |
PARENTE P, PARCESEPE P, COVELLI C, et al. Crosstalk between the tumor microenvironment and immune system in pancreatic ductal adenocarcinoma: Potential targets for new therapeutic approaches[J]. Gastroenterol Res Pract, 2018, 2018: 7530619. DOI: 10.1155/2018/7530619.
|
[9] |
BOUSSIOTIS VA. Molecular and biochemical aspects of the PD-1 checkpoint pathway[J]. N Engl J Med, 2016, 375(18): 1767-1778. DOI: 10.1056/NEJMra1514296.
|
[10] |
TSUKAMOTO M, IMAI K, ISHIMOTO T, et al. PD-L1 expression enhancement by infiltrating macrophage-derived tumor necrosis factor-α leads to poor pancreatic cancer prognosis[J]. Cancer Sci, 2019, 110(1): 310-320. DOI: 10.1111/cas.13874.
|
[11] |
CLARK CE, HINGORANI SR, MICK R, et al. Dynamics of the immune reaction to pancreatic cancer from inception to invasion[J]. Cancer Res, 2007, 67(19): 9518-9527. DOI: 10.1158/0008-5472.CAN-07-0175.
|
[12] |
VAQUERO EC, EDDERKAOUI M, NAM KJ, et al. Extracellular matrix proteins protect pancreatic cancer cells from death via mitochondrial and nonmitochondrial pathways[J]. Gastroenterology, 2003, 125(4): 1188-1202. DOI: 10.1016/s0016-5085(03)01203-4.
|
[13] |
PROCACCI P, MOSCHENI C, SARTORI P, et al. Tumor stroma cross-talk in human pancreatic ductal adenocarcinoma: A focus on the effect of the extracellular matrix on tumor cell phenotype and invasive potential[J]. Cells, 2018, 7(10): 158. DOI: 10.3390/cells7100158.
|
[14] |
SATO N, KOHI S, HIRATA K, et al. Role of hyaluronan in pancreatic cancer biology and therapy: Once again in the spotlight[J]. Cancer Sci, 2016, 107(5): 569-575. DOI: 10.1111/cas.12913.
|
[15] |
ZHEN DB, COVELER A, ZANON S, et al. Biomarker-driven and molecularly targeted therapies for pancreatic adenocarcinoma[J]. Semin Oncol, 2018, 45(3): 107-115. DOI: 10.1053/j.seminoncol.2018.05.004.
|
[16] |
ZHOU P, LI B, LIU F, et al. The epithelial to mesenchymal transition (EMT) and cancer stem cells: Implication for treatment resistance in pancreatic cancer[J]. Mol Cancer, 2017, 16(1): 52. DOI: 10.1186/s12943-017-0624-9.
|
[17] |
SINGH M, YELLE N, VENUGOPAL C, et al. EMT: Mechanisms and therapeutic implications[J]. Pharmacol Ther, 2018, 182: 80-94. DOI: 10.1016/j.pharmthera.2017.08.009.
|
[18] |
TRÄGER MM, DHAYAT SA. Epigenetics of epithelial-to-mesenchymal transition in pancreatic carcinoma[J]. Int J Cancer, 2017, 141(1): 24-32. DOI: 10.1002/ijc.30626.
|
[19] |
ZHENG X, CARSTENS JL, KIM J, et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer[J]. Nature, 2015, 527(7579): 525-530. DOI: 10.1038/nature16064.
|
[20] |
GARRIDO-LAGUNA I, USON M, RAJESHKUMAR NV, et al. Tumor engraftment in nude mice and enrichment in stroma- related gene pathways predict poor survival and resistance to gemcitabine in patients with pancreatic cancer[J]. Clin Cancer Res, 2011, 17(17): 5793-5800. DOI: 10.1158/1078-0432.CCR-11-0341.
|
[21] |
CATENACCI DV, JUNTTILA MR, KARRISON T, et al. Randomized Phase Ib/Ⅱ study of gemcitabine plus placebo or vismodegib, a hedgehog pathway inhibitor, in patients with metastatic pancreatic cancer[J]. J Clin Oncol, 2015, 33(36): 4284-4292. DOI: 10.1200/JCO.2015.62.8719.
|
[22] |
HAN X, LI Y, XU Y, et al. Reversal of pancreatic desmoplasia by re-educating stellate cells with a tumour microenvironment-activated nanosystem[J]. Nat Commun, 2018, 9(1): 3390. DOI: 10.1038/s41467-018-05906-x.
|
[23] |
HINGORANI SR, HARRIS WP, BECK JT, et al. Phase Ib study of PEGylated recombinant human hyaluronidase and gemcitabine in patients with advanced pancreatic cancer[J]. Clin Cancer Res, 2016, 22(12): 2848-2854. DOI: 10.1158/1078-0432.CCR-15-2010.
|
[24] |
HINGORANI SR, ZHENG L, BULLOCK AJ, et al. HALO 202: Randomized phase Ⅱ study of PEGPH20 plus nab-paclitaxel/gemcitabine versus nab-paclitaxel/gemcitabine in patients with untreated, metastatic pancreatic ductal adenocarcinoma[J]. J Clin Oncol, 2018, 36(4): 359-366. DOI: 10.1200/JCO.2017.74.9564.
|
[25] |
van CUTSEM E, TEMPERO MA, SIGAL D, et al. Randomized phase Ⅲ trial of pegvorhyaluronidase alfa with nab-paclitaxel plus gemcitabine for patients with hyaluronan-high metastatic pancreatic adenocarcinoma[J]. J Clin Oncol, 2020, 38(27): 3185-3194. DOI: 10.1200/JCO.20.00590.
|
[26] |
RAMANATHAN RK, MCDONOUGH SL, PHILIP PA, et al. Phase IB/Ⅱ randomized study of FOLFIRINOX plus pegylated recombinant human hyaluronidase versus FOLFIRINOX alone in patients with metastatic pancreatic adenocarcinoma: SWOG S1313[J]. J Clin Oncol, 2019, 37(13): 1062-1069. DOI: 10.1200/JCO.18.01295.
|
[27] |
LI X, SHEPARD HM, COWELL JA, et al. Parallel accumulation of tumor hyaluronan, collagen, and other drivers of tumor progression[J]. Clin Cancer Res, 2018, 24(19): 4798-4807. DOI: 10.1158/1078-0432.CCR-17-3284.
|
[28] |
BLAIR AB, KIM VM, MUTH ST, et al. Dissecting the stromal signaling and regulation of myeloid cells and memory effector T cells in pancreatic cancer[J]. Clin Cancer Res, 2019, 25(17): 5351-5363. DOI: 10.1158/1078-0432.CCR-18-4192.
|
[29] |
LI Z, JIA Z, GAO Y, et al. Activation of vitamin D receptor signaling downregulates the expression of nuclear FOXM1 protein and suppresses pancreatic cancer cell stemness[J]. Clin Cancer Res, 2015, 21(4): 844-853. DOI: 10.1158/1078-0432.CCR-14-2437.
|
[30] |
SHERMAN MH, YU RT, ENGLE DD, et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy[J]. Cell, 2014, 159(1): 80-93. DOI: 10.1016/j.cell.2014.08.007.
|
[31] |
LAROCCA CJ, WARNER SG. A new role for vitamin D: The enhancement of oncolytic viral therapy in pancreatic cancer[J]. Biomedicines, 2018, 6(4): 104. DOI: 10.3390/biomedicines6040104.
|
[32] |
GUO Z, WANG F, DI Y, et al. Antitumor effect of gemcitabine-loaded albumin nanoparticle on gemcitabine-resistant pancreatic cancer induced by low hENT1 expression[J]. Int J Nanomedicine, 2018, 13: 4869-4880. DOI: 10.2147/IJN.S166769.
|
[33] |
CANDIDO JB, MORTON JP, BAILEY P, et al. CSF1R+ macrophages sustain pancreatic tumor growth through T cell suppression and maintenance of key gene programs that define the squamous subtype[J]. Cell Rep, 2018, 23(5): 1448-1460. DOI: 10.1016/j.celrep.2018.03.131.
|
[34] |
SAUNG MT, MUTH S, DING D, et al. Targeting myeloid-inflamed tumor with anti-CSF-1R antibody expands CD137+ effector T-cells in the murine model of pancreatic cancer[J]. J Immunother Cancer, 2018, 6(1): 118. DOI: 10.1186/s40425-018-0435-6.
|
[35] |
BANERJEE K, KUMAR S, ROSS KA, et al. Emerging trends in the immunotherapy of pancreatic cancer[J]. Cancer Lett, 2018, 417: 35-46. DOI: 10.1016/j.canlet.2017.12.012.
|