[1] |
BOCCALETTO P, MACHNICKA MA, PURTA E, et al. MODOMICS: a data base of RNA modification pathways. 2017 update[J]. Nucleic Acids Res, 2018, 46(Issue D1): 303-307.
|
[2] |
WU F, CHENG W, ZHAO F, et al. Association of N6-methyladenosine with viruses and virally induced diseases[J]. Front Biosci (Landmark Ed), 2020, 25(6): 1184-1201. DOI: 10.2741/4852.
|
[3] |
VANDIVIER LE, GREGORY BD. Reading the epitranscriptome: New techniques and perspectives[J]. Enzymes, 2017, 41: 269-298. DOI: 10.1016/bs.enz.2017.03.004.
|
[4] |
GROZHIK AV, LINDER B, OLARERIN-GEORGE AO, et al. Mapping m6A at individual-nucleotide resolution using crosslinking and immunoprecipitation (miCLIP)[J]. Methods Mol Biol, 2017, 1562: 55-78. DOI: 10.1007/978-1-4939-6807-7_5.
|
[5] |
KE S, PANDYA-JONES A, SAITO Y, et al. m6A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover[J]. Genes Dev, 2017, 31(10): 990-1006. DOI: 10.1101/gad.301036.117.
|
[6] |
XIAO Y, WANG Y, TANG Q, et al. An elongation- and ligation-based qPCR amplification method for the radiolabeling-free detection of locus-specific N6-methyladenosine modification[J]. Angew Chem Int Ed Engl, 2018, 57(49): 15995-16000. DOI: 10.1002/anie.201807942.
|
[7] |
WILLIAMS GD, GOKHALE NS, HORNER SM. Regulation of Viral Infection by the RNA Modification N6-Methyladenosine[J]. Annu Rev Virol, 2019, 6(1): 235-253. DOI: 10.1146/annurev-virology-092818-015559.
|
[8] |
ZHAO BS, HE C. "Gamete On" for m6A: YTHDF2 exerts essential functions in female fertility[J]. Mol Cell, 2017, 67(6): 903-905. DOI: 10.1016/j.molcel.2017.09.004.
|
[9] |
WU F, CHENG W, ZHAO F, et al. Association of N6-methyladenosine with viruses and related diseases[J]. Virol J, 2019, 16(1): 133. DOI: 10.1186/s12985-019-1236-3.
|
[10] |
IMAM H, KHAN M, GOKHALE NS, et al. N6-methyladenosine modification of hepatitis B virus RNA differentially regulates the viral life cycle[J]. Proc Natl Acad Sci U S A, 2018, 115(35): 8829-8834. DOI: 10.1073/pnas.1808319115.
|
[11] |
LIU Y, YOU Y, LU Z, et al. N6-methyladenosine RNA modification-mediated cellular metabolism rewiring inhibits viral replication[J]. Science, 2019, 365(6458): 1171-1176. DOI: 10.1126/science.aax4468.
|
[12] |
HSU PJ, ZHU Y, MA H, et al. YTHDC2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis[J]. Cell Res, 2017, 27(9): 1115-1127. DOI: 10.1038/cr.2017.99.
|
[13] |
WARDA AS, KRETSCHMER J, HACKERT P, et al. Human METTL16 is a N6-methyladenosine (m6A) methyltransferase that targets pre-mRNAs and various non-coding RNAs[J]. EMBO Rep, 2017, 18(11): 2004-2014. DOI: 10.15252/embr.201744940.
|
[14] |
IANNIELLO Z, FATICA A. N6 -methyladenosine role in acute myeloid leukaemia[J]. Int J Mol Sci, 2018, 19(8): 2345. DOI: 10.3390/ijms19082345.
|
[15] |
PENDLETON KE, CHEN B, LIU K, et al. The U6 snRNA m6A methyltransferase mettl16 regulates SAM synthetase intron retention[J]. Cell, 2017, 169(5): 824-835.e14. DOI: 10.1016/j.cell.2017.05.003.
|
[16] |
DOXTADER KA, WANG P, SCARBOROUGH AM, et al. Structural basis for regulation of METTL16, an S-adenosylmethionine homeostasis factor[J]. Mol Cell, 2018, 71(6): 1001-1011.e4. DOI: 10.1016/j.molcel.2018.07.025.
|
[17] |
SHI H, WANG X, LU Z, et al. YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA[J]. Cell Res, 2017, 27(3): 315-328. DOI: 10.1038/cr.2017.15.
|
[18] |
LI A, CHEN YS, PING XL, et al. Cytoplasmic m6A reader YTHDF3 promotes mRNA translation[J]. Cell Res, 2017, 27(3): 444-447. DOI: 10.1038/cr.2017.10.
|
[19] |
ROUNDTREE IA, LUO GZ, ZHANG Z, et al. YTHDC1 mediates nuclear export of N6 -methyladenosine methylated mRNAs[J]. Elife, 2017, 6: e31311. DOI: 10.7554/eLife.31311.
|
[20] |
MAUER J, LUO X, BLANJOIE A, et al. Reversible methylation of m6Am in the 5' cap controls mRNA stability[J]. Nature, 2017, 541(7637): 371-375. DOI: 10.1038/nature21022.
|
[21] |
HU J, PROTZER U, SIDDIQUI A. Revisiting hepatitis B virus: Challenges of curative therapies[J]. J Virol, 2019, 93(20): e01032-19. DOI: 10.1128/JVI.01032-19.
|
[22] |
KIM GW, SIDDIQUI A. The role of N6-methyladenosine modification in the life cycle and disease pathogenesis of hepatitis B and C viruses[J]. Exp Mol Med, 2021, 53(3): 339-345. DOI: 10.1038/s12276-021-00581-3.
|
[23] |
IMAM H, KIM GW, SIDDIQUI A. Epitranscriptomic(N6-methyladenosine) modification of viral RNA and virus-host interactions[J]. Front Cell Infect Microbiol, 2020, 10: 584283. DOI: 10.3389/fcimb.2020.584283.
|
[24] |
KIM GW, IMAM H, KHAN M, et al. N6-Methyladenosine modification of hepatitis B and C viral RNAs attenuates host innate immunity via RIG-I signaling[J]. J Biol Chem, 2020, 295(37): 13123-13133. DOI: 10.1074/jbc.RA120.014260.
|
[25] |
LIU Y, NIE H, MAO R, et al. Interferon-inducible ribonuclease ISG20 inhibits hepatitis B virus replication through directly binding to the epsilon stem-loop structure of viral RNA[J]. PLoS Pathog, 2017, 13(4): e1006296. DOI: 10.1371/journal.ppat.1006296.
|
[26] |
IMAM H, KIM GW, MIR SA, et al. Interferon-stimulated gene 20 (ISG20) selectively degrades N6 -methyladenosine modified hepatitis B Virus transcripts[J]. PLoS Pathog, 2020, 16(2): e1008338. DOI: 10.1371/journal.ppat.1008338.
|
[27] |
KIM GW, IMAM H, KHAN M, et al. HBV-induced increased N6 methyladenosine modification of PTEN RNA affects innate immunity and contributes to HCC[J]. Hepatology, 2021, 73(2): 533-547. DOI: 10.1002/hep.31313.
|
[28] |
LI S, ZHU M, PAN R, et al. The tumor suppressor PTEN has a critical role in antiviral innate immunity[J]. Nat Immunol, 2016, 17(3): 241-249. DOI: 10.1038/ni.3311.
|
[29] |
KIM GW, SIDDIQUI A. Hepatitis B virus X protein recruits methyltransferases to affect cotranscriptional N6 -methyladenosine modification of viral/host RNAs[J]. Proc Natl Acad Sci U S A, 2021, 118(3): e2019455118. DOI: 10.1073/pnas.2019455118.
|
[30] |
MINOR MM, HOLLINGER FB, MCNEES AL, et al. Hepatitis B virus HBx protein mediates the degradation of host restriction factors through the cullin 4 DDB1 E3 ubiquitin ligase complex[J]. Cells, 2020, 9(4): 834. DOI: 10.3390/cells9040834.
|
[31] |
YUAN XD, WANG JW, FANG Y, et al. Methylation status of the T-cadherin gene promotor in peripheral blood mononuclear cells is associated with HBV-related hepatocellular carcinoma progression[J]. Pathol Res Pract, 2020, 216(5): 152914. DOI: 10.1016/j.prp.2020.152914.
|
[32] |
CHEN M, WEI L, LAW CT, et al. RNA N6 -methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2[J]. Hepatology, 2018, 67(6): 2254-2270. DOI: 10.1002/hep.29683.
|
[33] |
CHEN CY, CHEN J, HE L, et al. PTEN: Tumor suppressor and metabolic regulator[J]. Front Endocrinol (Lausanne), 2018, 9: 338. DOI: 10.3389/fendo.2018.00338.
|
[34] |
RINGELHAN M, MCKEATING JA, PROTZER U. Viral hepatitis and liver cancer[J]. Philos Trans R Soc Lond B Biol Sci, 2017, 372(1732): 20160274. DOI: 10.1098/rstb.2016.0274.
|
[35] |
RAO X, LAI L, LI X, et al. N6 -methyladenosine modification of circular RNA circ-ARL3 facilitates hepatitis B virus-associated hepatocellular carcinoma via sponging miR-1305[J]. IUBMB Life, 2021, 73(2): 408-417. DOI: 10.1002/iub.2438.
|
[36] |
HESSER CR, KARIJOLICH J, DOMINISSINI D, et al. N6 -methyladenosine modification and the YTHDF2 reader protein play cell type specific roles in lytic viral gene expression during Kaposi's sarcoma-associated herpesvirus infection[J]. PLoS Pathog, 2018, 14(4): e1006995. DOI: 10.1371/journal.ppat.1006995.
|
[37] |
TAN B, GAO SJ. The RNA epitranscriptome of DNA viruses[J]. J Virol, 2018, 92(22): e00696-18. DOI: 10.1128/JVI.00696-18.
|
[38] |
GONZALES-VAN HORN SR, SARNOW P. Making the mark: The role of adenosine modifications in the life cycle of RNA viruses[J]. Cell Host Microbe, 2017, 21(6): 661-669. DOI: 10.1016/j.chom.2017.05.008.
|
[39] |
COURTNEY DG, TSAI K, BOGERD HP, et al. Epitranscriptomic addition of m5C to HIV-1 transcripts regulates viral gene expression[J]. Cell Host Microbe, 2019, 26(2): 217-227.e6. DOI: 10.1016/j.chom.2019.07.005.
|
[40] |
TSAI K, JAGUVA VASUDEVAN AA, MARTINEZ CAMPOS C, et al. Acetylation of cytidine residues boosts HIV-1 gene expression by increasing viral RNA stability[J]. Cell Host Microbe, 2020, 28(2): 306-312.e6. DOI: 10.1016/j.chom.2020.05.011.
|