[1] |
GARRIDO A, DJOUDER N. Cirrhosis: A questioned risk factor for hepatocellular carcinoma[J]. Trends Cancer, 2021, 7(1): 29-36. DOI: 10.1016/j.trecan.2020.08.005.
|
[2] |
YAGI S, HIRATA M, MIYACHI Y, et al. Liver regeneration after hepatectomy and partial liver transplantation[J]. Int J Mol Sci, 2020, 21(21): 8414. DOI: 10.3390/ijms21218414.
|
[3] |
HAYASHI T, SHIBATA M, OE S, et al. Antiplatelet therapy improves the prognosis of patients with hepatocellular carcinoma[J]. Cancers (Basel), 2020, 12(11): 3215. DOI: 10.3390/cancers12113215.
|
[4] |
WOJTUKIEWICZ MZ, SIERKO E, HEMPEL D, et al. Platelets and cancer angiogenesis nexus[J]. Cancer Metastasis Rev, 2017, 36(2): 249-262. DOI: 10.1007/s10555-017-9673-1.
|
[5] |
PAVLOVIC N, RANI B, GERWINS P, et al. Platelets as key factors in hepatocellular carcinoma[J]. Cancers (Basel), 2019, 11(7): 1022. DOI: 10.3390/cancers11071022.
|
[6] |
CHEN F, ZHUANG X, LIN L, et al. New horizons in tumor microenvironment biology: challenges and opportunities[J]. BMC Med, 2015, 13: 45. DOI: 10.1186/s12916-015-0278-7.
|
[7] |
SHAN Z, JU C. Hepatic macrophages in liver injury[J]. Front Immunol, 2020, 11: 322. DOI: 10.3389/fimmu.2020.00322.
|
[8] |
POISSON J, LEMOINNE S, BOULANGER C, et al. Liver sinusoidal endothelial cells: Physiology and role in liver diseases[J]. J Hepatol, 2017, 66(1): 212-227. DOI: 10.1016/j.jhep.2016.07.009.
|
[9] |
GARRIDO A, DJOUDER N. Cirrhosis: A questioned risk factor for hepatocellular carcinoma[J]. Trends Cancer, 2021, 7(1): 29-36. DOI: 10.1016/j.trecan.2020.08.005.
|
[10] |
WAN S, ZHAO E, KRYCZEK I, et al. Tumor-associated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells[J]. Gastroenterology, 2014, 147(6): 1393-1404. DOI: 10.1053/j.gastro.2014.08.039.
|
[11] |
TSUCHIDA T, FRIEDMAN SL. Mechanisms of hepatic stellate cell activation[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(7): 397-411. DOI: 10.1038/nrgastro.2017.38.
|
[12] |
DHAR D, BAGLIERI J, KISSELEVA T, et al. Mechanisms of liver fibrosis and its role in liver cancer[J]. Exp Biol Med (Maywood), 2020, 245(2): 96-108. DOI: 10.1177/1535370219898141.
|
[13] |
WANG H, LU Z, ZHAO X. Tumorigenesis, diagnosis, and therapeutic potential of exosomes in liver cancer[J]. J Hematol Oncol, 2019, 12(1): 133. DOI: 10.1186/s13045-019-0806-6.
|
[14] |
PROVOST P. The clinical significance of platelet microparticle-associated microRNAs[J]. Clin Chem Lab Med, 2017, 55(5): 657-666. DOI: 10.1515/cclm-2016-0895.
|
[15] |
WANG H, LU Z, ZHAO X. Tumorigenesis, diagnosis, and therapeutic potential of exosomes in liver cancer[J]. J Hematol Oncol, 2019, 12(1): 133. DOI: 10.1186/s13045-019-0806-6.
|
[16] |
PAGGETTI J, HADERK F, SEIFFERT M, et al. Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts[J]. Blood, 2015, 126(9): 1106-1117. DOI: 10.1182/blood-2014-12-618025.
|
[17] |
KIM JH, LEE CH, LEE SW. Exosomal transmission of microRNA from HCV replicating cells stimulates transdifferentiation in hepatic stellate cells[J]. Mol Ther Nucleic Acids, 2019, 14: 483-497. DOI: 10.1016/j.omtn.2019.01.006.
|
[18] |
ZHOU Y, REN H, DAI B, et al. Hepatocellular carcinoma-derived exosomal miRNA-21 contributes to tumor progression by converting hepatocyte stellate cells to cancer-associated fibroblasts[J]. J Exp Clin Cancer Res, 2018, 37(1): 324. DOI: 10.1186/s13046-018-0965-2.
|
[19] |
LIN W, WANG H, ZHONG M, et al. Effect and molecular mechanisms of jiedu recipe on hypoxia-induced angiogenesis after transcatheter arterial chemoembolization in hepatocellular carcinoma[J]. Evid Based Complement Alternat Med, 2021, 2021: 6529376. DOI: 10.1155/2021/6529376.
|
[20] |
CHEN Q, XU L, CHEN J, et al. Tumor vasculature normalization by orally fed erlotinib to modulate the tumor microenvironment for enhanced cancer nanomedicine and immunotherapy[J]. Biomaterials, 2017, 148: 69-80. DOI: 10.1016/j.biomaterials.2017.09.021.
|
[21] |
LI S, ZHANG Y, WANG J, et al. Nanoparticle-mediated local depletion of tumour-associated platelets disrupts vascular barriers and augments drug accumulation in tumours[J]. Nat Biomed Eng, 2017, 1(8): 667-679. DOI: 10.1038/s41551-017-0115-8.
|
[22] |
HEINDRYCKX F, GERWINS P. Targeting the tumor stroma in hepatocellular carcinoma[J]. World J Hepatol, 2015, 7(2): 165-176. DOI: 10.4254/wjh.v7.i2.165.
|
[23] |
de PALMA M, BIZIATO D, PETROVA TV. Microenvironmental regulation of tumour angiogenesis[J]. Nat Rev Cancer, 2017, 17(8): 457-474. DOI: 10.1038/nrc.2017.51.
|
[24] |
GORDON-WEEKS AN, LIM SY, YUZHALIN AE, et al. Neutrophils promote hepatic metastasis growth through fibroblast growth factor 2-dependent angiogenesis in mice[J]. Hepatology, 2017, 65(6): 1920-1935. DOI: 10.1002/hep.29088.
|
[25] |
DEPPERMANN C, KUBES P. Platelets and infection[J]. Semin Immunol, 2016, 28(6): 536-545. DOI: 10.1016/j.smim.2016.10.005.
|
[26] |
GHAFOORY S, VARSHNEY R, ROBISON T, et al. Platelet TGF-β1 deficiency decreases liver fibrosis in a mouse model of liver injury[J]. Blood Adv, 2018, 2(5): 470-480. DOI: 10.1182/bloodadvances.2017010868.
|
[27] |
JIANG X, WANG J, DENG X, et al. The role of microenvironment in tumor angiogenesis[J]. J Exp Clin Cancer Res, 2020, 39(1): 204. DOI: 10.1186/s13046-020-01709-5.
|
[28] |
KIKUCHI A, SINGH S, PODDAR M, et al. Hepatic stellate cell-specific platelet-derived growth factor receptor-α loss reduces fibrosis and promotes repair after hepatocellular injury[J]. Am J Pathol, 2020, 190(10): 2080-2094. DOI: 10.1016/j.ajpath.2020.06.006.
|
[29] |
ORR MT, LANIER LL. Natural killer cell education and tolerance[J]. Cell, 2010, 142(6): 847-856. DOI: 10.1016/j.cell.2010.08.031.
|
[30] |
KUROKAWA T, OHKOHCHI N. Platelets in liver disease, cancer and regeneration[J]. World J Gastroenterol, 2017, 23(18): 3228-3239. DOI: 10.3748/wjg.v23.i18.3228.
|
[31] |
BEST MG, WURDINGER T. Tumor-educated platelets for the earlier detection of hepatocellular carcinoma[J]. Clin Res Hepatol Gastroenterol, 2020, 44(6): 794-795. DOI: 10.1016/j.clinre.2020.03.028.
|
[32] |
VOLZ J, MAMMADOVA-BACH E, GIL-PULIDO J, et al. Inhibition of platelet GPVI induces intratumor hemorrhage and increases efficacy of chemotherapy in mice[J]. Blood, 2019, 133(25): 2696-2706. DOI: 10.1182/blood.2018877043.
|
[33] |
PAPA AL, JIANG A, KORIN N, et al. Platelet decoys inhibit thrombosis and prevent metastatic tumor formation in preclinical models[J]. Sci Transl Med, 2019, 11(479). DOI: 10.1126/scitranslmed.aau5898.
|
[34] |
MALEHMIR M, PFISTER D, GALLAGE S, et al. Platelet GPIbα is a mediator and potential interventional target for NASH and subsequent liver cancer[J]. Nat Med, 2019, 25(4): 641-655. DOI: 10.1038/s41591-019-0379-5.
|
[35] |
KAPS L, SCHUPPAN D. Targeting cancer associated fibroblasts in liver fibrosis and liver cancer using nanocarriers[J]. Cells, 2020, 9(9): 2027. DOI: 10.3390/cells9092027.
|
[36] |
SCHUPPAN D, KIM YO. Evolving therapies for liver fibrosis[J]. J Clin Invest, 2013, 123(5): 1887-1901. DOI: 10.1172/JCI66028.
|
[37] |
WANG H, WU Q, LIU Z, et al. Downregulation of FAP suppresses cell proliferation and metastasis through PTEN/PI3K/AKT and Ras-ERK signaling in oral squamous cell carcinoma[J]. Cell Death Dis, 2014, 5(4): e1155. DOI: 10.1038/cddis.2014.122.
|
[38] |
KARSDAL MA, NIELSEN SH, LEEMING DJ, et al. The good and the bad collagens of fibrosis-Their role in signaling and organ function[J]. Adv Drug Deliv Rev, 2017, 121: 43-56. DOI: 10.1016/j.addr.2017.07.014.
|
[39] |
OUYANG JZ, ZHOU YZ, ZHU RL, et al. Application of combined therapy with molecular-targeted drugs and immune checkpoint inhibitors and other combined therapies in hepatocellular carcinoma[J]. J Clin Hepatol, 2021, 37(4): 925-930. DOI: 10.3969/j.issn.1001-5256.2021.04.043.
欧阳敬中, 周艳召, 朱瑞利, 等. 分子靶向药物与免疫抑制剂联合治疗及其他联合治疗在肝细胞癌中的应用[J]. 临床肝胆病杂志, 2021, 37(4): 925-930. DOI: 10.3969/j.issn.1001-5256.2021.04.043.
|
[40] |
WINKLER M, STANICZEK T, KVRSCHNER SW, et al. Endothelial GATA4 controls liver fibrosis and regeneration by preventing a pathogenic switch in angiocrine signaling[J]. J Hepatol, 2021, 74(2): 380-393. DOI: 10.1016/j.jhep.2020.08.033.
|
[41] |
POISSON J, LEMOINNE S, BOULANGER C, et al. Liver sinusoidal endothelial cells: Physiology and role in liver diseases[J]. J Hepatol, 2017, 66(1): 212-227. DOI: 10.1016/j.jhep.2016.07.009.
|
[42] |
BREITKOPF-HEINLEIN K, MEYER C, KÖNIG C, et al. BMP-9 interferes with liver regeneration and promotes liver fibrosis[J]. Gut, 2017, 66(5): 939-954. DOI: 10.1136/gutjnl-2016-313314.
|
[43] |
DESROCHES-CASTAN A, TILLET E, RICARD N, et al. Bone morphogenetic protein 9 is a paracrine factor controlling liver sinusoidal endothelial cell fenestration and protecting against hepatic fibrosis[J]. Hepatology, 2019, 70(4): 1392-1408. DOI: 10.1002/hep.30655.
|
[44] |
GARCIA-TSAO G, KORZENIK JR, YOUNG L, et al. Liver disease in patients with hereditary hemorrhagic telangiectasia[J]. N Engl J Med, 2000, 343(13): 931-936. DOI: 10.1056/NEJM200009283431305.
|
[45] |
JOHN M, KIM KJ, BAE S, et al. Role of BMP-9 in human liver disease[J]. Gut, 2019, 68(11): 2097-2100. DOI: 10.1136/gutjnl-2018-317543.
|