中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 38 Issue 7
Jul.  2022
Turn off MathJax
Article Contents

Mechanism of action of Eupolyphaga steleophaga in improving nonalcoholic steatohepatitis by regulating syndecan 3

DOI: 10.3969/j.issn.1001-5256.2022.07.012
Research funding:

National Natural Science Foundation of China (81673788);

National Natural Science Foundation of China (81873136);

National Natural Science Foundation of China (81803898);

National Natural Science Foundation of China (81803232);

National Natural Science Foundation of China (82004106);

Shanghai Natural Science Foundation of China (20ZR1450300);

Putuo District of Shanghai Innovation Project (ptkwws201817);

Putuo District of Shanghai Innovation Project (ptkwws201904);

Putuo District of Shanghai Innovation Project (ptkwws202223);

Putuo District of Shanghai Innovation Project (ptkwws202112);

Scientific Research Fund of Shanghai Sixth People's Hospital Medical Group (21-ly-02);

Xinglin Scholar of Chengdu University of Traditional Chinese Medicine (YYZX2020117)

More Information
  • Corresponding author: LIU Cheng, liucheng0082010@163.com(ORCID: 0000-0002-8741-6169)
  • Received Date: 2021-11-23
  • Accepted Date: 2022-01-21
  • Published Date: 2022-07-20
  •   Objective  To investigate the effect of Eupolyphaga steleophaga on nonalcoholic steatohepatitis induced by choline-deficient L-amino acid-defined diet (CDAA) and its mechanism by regulating syndecan 3.  Methods  A total of 18 male C57BL/6 mice were randomly divided into choline-sufficient L-amino acid-defined diet (CSAA) group, CDAA group, and CDAA+Eupolyphaga steleophaga group (CDAA+T group). Since week 12 of modeling, the mice in the CDAA+T group were fed with Eupolyphaga steleophaga 0.108 g/kg (10 times that the dose for adults) by gavage, and those in the CSAA and CDAA groups were given an equal volume of normal saline by gavage. Serum and liver tissue samples were collected at the end of week 18 to measure liver function, total cholesterol (TC), and triglyceride (TG) and observe liver pathology. Quantitative real-time PCR was used to measure the mRNA expression levels of transforming growth factor β (TGFβ), α-smooth muscle actin (α-SMA), collagen type Ⅰ α1 (Col1α1), and SDC3; the mRNA expression of SDC3 was measured in human and mouse primary hepatocytes, hepatic stellate cells (HSCs), liver sinusoidal endothelial cells (LSECs), and Kupffer cells (KCs), and SDC3 was silenced by si-RNA to investigate the role of SDC3 in HSC activation. Western blotting was used to measure the protein expression of SDC3. A one-way analysis of variance was used for comparison of continuous data between multiple groups, and the SNK test or the least significant difference t-test was used for further comparison between two groups.  Results  Compared with the CSAA group, the CDAA group had significant increases in liver function parameters [alanine aminotransferase (ALT) and aspartate aminotransferase (AST)] and the levels of TC and TG in serum and the liver (all P < 0.05), and compared with the CDAA group, the CDAA+T group had significant reductions in the serum levels of ALT, AST, TC, and TG (all P < 0.05). HE staining showed that the CDAA group had marked hepatocyte steatosis and increased inflammatory cell infiltration, and the CDAA+T group had alleviated inflammatory cell infiltration; Sirius Red staining showed a significant increase in collagen hyperplasia in the CDAA group and a significant reduction in collagen hyperplasia in the CDAA+T group; oil red staining showed marked fat deposition in the CDAA group and a reduction in fat deposition in the CDAA+T group. Compared with the CDAA group, the CDAA+T group had significant reductions in the mRNA expression levels of TGFβ, SDC3, α-SMA, and COL1α1 and the protein expression levels of SDC3 and α-SMA. Immunohistochemistry showed a very low expression level of SDC3 in the CSAA group and a significant increase in the expression of SDC3 in the CDAA group, mainly in the interstitial cells, and there was a significant reduction after Eupolyphaga steleophaga intervention (all P < 0.05). PCR results showed the highest expression of SDC3 in HSCs of human and mouse liver (all P < 0.001). LX2 cells were cultured in vitro, and Eupolyphaga steleophaga treatment significantly reduced the upregulation of α-SMA and Col1α1 induced by TGFβ, while after SDC3 gene silencing, Eupolyphaga steleophaga did not inhibit the increases in α-SMA and Col1α1 (all P < 0.05).  Conclusion  Eupolyphaga steleophaga can significantly improve nonalcoholic steatohepatitis induced by CDAA, possibly by regulating the expression of SDC3 in HSCs.

     

  • loading
  • [1]
    LI HS, CHEN SD, YING H, et al. Intervention effect of salidroside on liver fat synthesis and oxidation of non-alcoholic fatty liver in rats induced by high-fat diet[J]. China J Tradit Chin Med Pharma, 2017, 32(10): 4625-4628. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY201710084.htm

    李红山, 陈少东, 应豪, 等. 红景天苷对高脂饮食诱导的大鼠非酒精性脂肪肝肝脏脂肪合成和氧化环节的干预作用[J]. 中华中医药杂志, 2017, 32(10): 4625-4628. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY201710084.htm
    [2]
    SHI ZH, ZHENG D, GUO J, et al. Effects of scallion extract on PGC-1α and mitochondrial biosynthesis in nonalcoholic fatty liver model rats[J]. Lishizhen Med Mater Med Res, 2018, 29(10): 2320-2322. DOI: 10.3969/j.issn.1008-0805.2018.10.005.

    时昭红, 郑丁, 郭洁, 等. 葱白提取物对非酒精性脂肪肝模型大鼠PGC-1α和线粒体生物合成的影响[J]. 时珍国医国药, 2018, 29(10): 2320-2322. DOI: 10.3969/j.issn.1008-0805.2018.10.005.
    [3]
    LIU C, YUAN X, TAO L, et al. Xia-yu-xue decoction (XYXD) reduces carbon tetrachloride (CCl4)-induced liver fibrosis through inhibition hepatic stellate cell activation by targeting NF-κB and TGF-β1 signaling pathways[J]. BMC Complement Altern Med, 2015, 15: 201. DOI: 10.1186/s12906-015-0733-1.
    [4]
    LIU C, CAI J, CHENG Z, et al. Xiayuxue decoction reduces renal injury by promoting macrophage apoptosis in hepatic cirrhotic rats[J]. Genet Mol Res, 2015, 14(3): 10760-10773. DOI: 10.4238/2015.September.9.15.
    [5]
    WU L, ZHANG J, MA WT, et al. Xiayuxue Decoction inhibits methionine-choline-deficient-induced nonalcoholic steatohepatitis in mice[J/CD]. Chin J Liver Dis (Electronic Version), 2018, 10(3): 8. DOI: 10.3969/j.issn.1674-7380.2018.03.009.

    吴柳, 张洁, 马文婷, 等. 下瘀血汤对胆碱蛋氨酸缺乏诱导的小鼠非酒精性脂肪性肝炎的抑制作用[J/CD]. 中国肝脏病杂志(电子版), 2018, 10(3): 8. DOI: 10.3969/j.issn.1674-7380.2018.03.009.
    [6]
    WU L, YANG GY, ZHANG J, et al. Xiayuxue Decoction improved HFD-induced-nonalcoholic steatohepatitis mice by down-regulating NLRP3[J]. Chin J Integr Trad West Med, 2020, 40(10): 7. DOI: 10.7661/j.cjim.20200904.336.

    吴柳, 杨广越, 张洁, 等. 下瘀血汤下调NLRP3改善高脂饮食诱导小鼠非酒精性脂肪性肝炎[J]. 中国中西医结合杂志, 2020, 40(10): 7. DOI: 10.7661/j.cjim.20200904.336.
    [7]
    XIE YC, HU GX, PENG YZ, et al. Clinical effect of Dahuang Zhechong capsules combined with entecavir in treatment of chronic hepatitis B patients with liver fibrosis[J]. J Clin Hepatol, 2016, 32(8): 1502-1507. DOI: 10.3969/j.issn.1001-5256.2016.08.014.

    谢永财, 胡国信, 彭雁忠, 等. 大黄蟅虫胶囊联合恩替卡韦治疗慢性乙型肝炎肝纤维化的效果观察[J]. 临床肝胆病杂志, 2016, 32(8): 1502-1507. DOI: 10.3969/j.issn.1001-5256.2016.08.014.
    [8]
    CHEN SL, CHEN DX, DU GL. Experimental study of Xiayuxue Decoction component compatibility aganist immunity hepatic fibrosis rat model[J]. Lishizhen Med Mater Med Res, 2013, 24(6): 3. DOI: 10.3969/j.issn.1008-0805.2013.06.047

    陈少丽, 陈德兴, 都广礼. 下瘀血汤组分配伍抗免疫性肝纤维化大鼠模型的实验研究[J]. 时珍国医国药, 2013, 24(6): 3. DOI: 10.3969/j.issn.1008-0805.2013.06.047.
    [9]
    REIZES O, LINCECUM J, WANG Z, et al. Transgenic expression of syndecan-1 uncovers a physiological control of feeding behavior by syndecan-3[J]. Cell, 2001, 106(1): 105-116. DOI: 10.1016/s0092-8674(01)00415-9.
    [10]
    STRADER AD, REIZES O, WOODS SC, et al. Mice lacking the syndecan-3 gene are resistant to diet-induced obesity[J]. J Clin Invest, 2004, 114(9): 1354-1360. DOI: 10.1172/JCI20631.
    [11]
    TAO L, MA W, WU L, et al. Glial cell line-derived neurotrophic factor (GDNF) mediates hepatic stellate cell activation via ALK5/Smad signalling[J]. Gut, 2019, 68(12): 2214-2227. DOI: 10.1136/gutjnl-2018-317872.
    [12]
    ZHANG W, YANG GY, SHEN DX, et al. Mechanism of action of Xiayuxue decoction in inhibiting liver fibrosis by regulating glial cell line-derived neurotrophic factor[J]. J Clin Hepatol, 2021, 37(3): 575-581. DOI: 10.3969/j.issn.1001-5256.2021.03.015.

    张玮, 杨广越, 沈东晓, 等. 下瘀血汤抑制胶质细胞源性神经营养因子抗肝纤维化的作用机制[J]. 临床肝胆病杂志, 2021, 37(3): 575-581. DOI: 10.3969/j.issn.1001-5256.2021.03.015.
    [13]
    LIU XL, YANG GY, ZHANG W, et al. Therapeutic effect of Taohong Siwu decoction on a mouse model of carbon tetrachloride-induced liver fibrosis and its mechanism[J]. J Clin Hepatol, 2021, 37(11): 2563-2568. DOI: 10.3969/j.issn.1001-5256.2021.11.016.

    刘旭凌, 杨广越, 张玮, 等. 桃红四物汤对CCl4诱导肝纤维化小鼠模型的干预作用及其机制[J]. 临床肝胆病杂志, 2021, 37(11): 2563-2568. DOI: 10.3969/j.issn.1001-5256.2021.11.016.
    [14]
    The Chinese National Workshop on Fatty Liver and Alcoholic Liver Disease for the Chinese Liver Disease Association. Guidelines for management of nonalcoholic fatty liver disease: an updated and revised edition[J]. J Mod Med Health, 2011, 27(5): 641-644. DOI: 10.3760/cma.j.issn.1007-3418.2011.03.002.

    中华医学会肝病学分会脂肪肝和酒精性肝病学组. 非酒精性脂肪性肝病诊疗指南(2010年修订版)[J]. 现代医药卫生, 2011, 27(5): 641-644. DOI: 10.3760/cma.j.issn.1007-3418.2011.03.002.
    [15]
    ZHENG PY, AN XQ, LIU JC. Role of angiopoietin-like proteins in the development of nonalcoholic fatty liver dis-ease[J]. J Clin Hepatol, 2021, 37(11) : 2680-2683. DOI: 10.3969/j.issn.1001-5256.2021.11.042.

    郑培玉, 安秀琴, 刘近春. 血管生成素样蛋白在非酒精性脂肪性肝病发展中的作用[J]. 临床肝胆病杂志, 2021, 37(11) : 2680-2683. DOI: 10.3969/j.issn.1001-5256.2021.11.042.
    [16]
    MANNE V, HANDA P, KOWDLEY KV. Pathophysiology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis[J]. Clin Liver Dis, 2018, 22(1): 23-37. DOI: 10.1016/j.cld.2017.08.007.
    [17]
    LAN T, HU Y, HU F, et al. Hepatocyte glutathione S-transferase mu 2 prevents non-alcoholic steatohepatitis by suppressing ASK1 signaling[J]. J Hepatol, 2022, 76(2): 407-419. DOI: 10.1016/j.jhep.2021.09.040.
    [18]
    REPETTO MG, OSSANI G, MONSERRAT AJ, et al. Oxidative damage: the biochemical mechanism of cellular injury and necrosis in choline deficiency[J]. Exp Mol Pathol, 2010, 88(1): 143-149. DOI: 10.1016/j.yexmp.2009.11.002.
    [19]
    VETELÄINEN R, van VLIET A, van GULIK TM. Essential pathogenic and metabolic differences in steatosis induced by choline or methione-choline deficient diets in a rat model[J]. J Gastroenterol Hepatol, 2007, 22(9): 1526-1533. DOI: 10.1111/j.1440-1746.2006.04701.x.
    [20]
    ZHOU Q, SU J, JI MY. Progress in the treatment of nonalcoholic fatty liver disease[J]. China Med Herald, 2020, 17(6): 26-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YYCY202006008.htm

    周谦, 苏娟, 季梦遥. 非酒精性脂肪性肝病的治疗研究进展[J]. 中国医药导报, 2020, 17(6): 26-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YYCY202006008.htm
    [21]
    DONG PP, ZHANG JY, WEI YL, et al. Pharmacokinetics and pharmacodynamics of bioactive peptide LL8 from Steleophaga plancyi in rats[J]. Chin Tradit Herb Drug, 2021, 52(15): 4607-4613. DOI: 10.7501/j.issn.0253-2670.2021.15.019.

    董萍萍, 张加余, 魏永利, 等. 土鳖虫活性肽LL8在大鼠体内的药动学及药效学研究[J]. 中草药, 2021, 52(15): 4607-4613. DOI: 10.7501/j.issn.0253-2670.2021.15.019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article Metrics

    Article views (505) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return