[1] |
SIEGEL RL, MILLER KD, FUCHS HE, et al. Cancer statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33. DOI: 10.3322/caac.21654.
|
[2] |
ROY A, SAHOO J, KAMALANATHAN S, et al. Diabetes and pancreatic cancer: Exploring the two-way traffic[J]. World J Gastroenterol, 2021, 27(30): 4939-4962. DOI: 10.3748/wjg.v27.i30.4939.
|
[3] |
SHARMA A, SMYRK TC, LEVY MJ, et al. Fasting blood glucose levels provide estimate of duration and progression of pancreatic cancer before diagnosis[J]. Gastroenterology, 2018, 155(2): 490-500. DOI: 10.1053/j.gastro.2018.04.025.
|
[4] |
SAH RP, NAGPAL SJ, MUKHOPADHYAY D, et al. New insights into pancreatic cancer-induced paraneoplastic diabetes[J]. Nat Rev Gastroenterol Hepatol, 2013, 10(7): 423-433. DOI: 10.1038/nrgastro.2013.49.
|
[5] |
KLEEFF J, COSTELLO E, JACKSON R, et al. The impact of diabetes mellitus on survival following resection and adjuvant chemotherapy for pancreatic cancer[J]. Br J Cancer, 2016, 115(7): 887-894. DOI: 10.1038/bjc.2016.277.
|
[6] |
BITTERMAN DS, WINTER KA, HONG TS, et al. Impact of diabetes and insulin use on prognosis in patients with resected pancreatic cancer: An ancillary analysis of NRG oncology RTOG 9704[J]. Int J Radiat Oncol Biol Phys, 2021, 109(1): 201-211. DOI: 10.1016/j.ijrobp.2020.08.042.
|
[7] |
KOO DH, HAN KD, PARK CY. The incremental risk of pancreatic cancer according to fasting glucose levels: Nationwide population-based cohort study[J]. J Clin Endocrinol Metab, 2019, 104(10): 4594-4599. DOI: 10.1210/jc.2019-00033.
|
[8] |
LIAO WC, TU YK, WU MS, et al. Blood glucose concentration and risk of pancreatic cancer: systematic review and dose-response meta-analysis[J]. BMJ, 2015, 350: g7371. DOI: 10.1136/bmj.g7371.
|
[9] |
SONG S, WANG B, ZHANG X, et al. Long-term diabetes mellitus is associated with an increased risk of pancreatic cancer: A meta-analysis[J]. PLoS One, 2015, 10(7): e0134321. DOI: 10.1371/journal.pone.0134321.
|
[10] |
ANDERSEN DK, KORC M, PETERSEN GM, et al. Diabetes, pancreatogenic diabetes, and pancreatic cancer[J]. Diabetes, 2017, 66(5): 1103-1110. DOI: 10.2337/db16-1477.
|
[11] |
RAGHAVAN SR, BALLEHANINNA UK, CHAMBERLAIN RS. The impact of perioperative blood glucose levels on pancreatic cancer prognosis and surgical outcomes: an evidence-based review[J]. Pancreas, 2013, 42(8): 1210-1217. DOI: 10.1097/MPA.0b013e3182a6db8e.
|
[12] |
PANG Y, KARTSONAKI C, GUO Y, et al. Diabetes, plasma glucose and incidence of pancreatic cancer: A prospective study of 0.5 million Chinese adults and a meta-analysis of 22 cohort studies[J]. Int J Cancer, 2017, 140(8): 1781-1788. DOI: 10.1002/ijc.30599.
|
[13] |
WOLPIN BM, BAO Y, QIAN ZR, et al. Hyperglycemia, insulin resistance, impaired pancreatic β-cell function, and risk of pancreatic cancer[J]. J Natl Cancer Inst, 2013, 105(14): 1027-1035. DOI: 10.1093/jnci/djt123.
|
[14] |
TURATI F, ROSSI M, MATTIOLI V, et al. Diabetes risk reduction diet and the risk of pancreatic cancer[J]. Eur J Nutr, 2022, 61(1): 309-316. DOI: 10.1007/s00394-021-02646-5.
|
[15] |
SHARMA A, KANDLAKUNTA H, NAGPAL S, et al. Model to determine risk of pancreatic cancer in patients with new-onset diabetes[J]. Gastroenterology, 2018, 155(3): 730-739. DOI: 10.1053/j.gastro.2018.05.023.
|
[16] |
MOLINA-MONTES E, COSCIA C, GÓMEZ-RUBIO P, et al. Deciphering the complex interplay between pancreatic cancer, diabetes mellitus subtypes and obesity/BMI through causal inference and mediation analyses[J]. Gut, 2021, 70(2): 319-329. DOI: 10.1136/gutjnl-2019-319990.
|
[17] |
PANNALA R, LEIRNESS JB, BAMLET WR, et al. Prevalence and clinical profile of pancreatic cancer-associated diabetes mellitus[J]. Gastroenterology, 2008, 134(4): 981-987. DOI: 10.1053/j.gastro.2008.01.039.
|
[18] |
HART PA, BAICHOO E, BI Y, et al. Pancreatic polypeptide response to a mixed meal is blunted in pancreatic head cancer associated with diabetes mellitus[J]. Pancreatology, 2015, 15(2): 162-166. DOI: 10.1016/j.pan.2015.02.006.
|
[19] |
BAO J, LIU D, SUN J, et al. Pancreatic cancer-associated diabetes mellitus is characterized by reduced β-cell secretory capacity, rather than insulin resistance[J]. Diabetes Res Clin Pract, 2022, 185: 109223. DOI: 10.1016/j.diabres.2022.109223.
|
[20] |
ROHRMANN S, GROTE VA, BECKER S, et al. Concentrations of IGF-I and IGFBP-3 and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition[J]. Br J Cancer, 2012, 106(5): 1004-1010. DOI: 10.1038/bjc.2012.19.
|
[21] |
TRAJKOVIC- ARSIC M, KALIDERIS E, SIVEKE JT. The role of insulin and IGF system in pancreatic cancer[J]. J Mol Endocrinol, 2013, 50(3): R67-R74. DOI: 10.1530/JME-12-0259.
|
[22] |
HOPKINS BD, PAULI C, DU X, et al. Suppression of insulin feedback enhances the efficacy of PI3K inhibitors[J]. Nature, 2018, 560(7719): 499-503. DOI: 10.1038/s41586-018-0343-4.
|
[23] |
HUA F, LI K, YU JJ, et al. TRB3 links insulin/IGF to tumour promotion by interacting with p62 and impeding autophagic/proteasomal degradations[J]. Nat Commun, 2015, 6: 7951. DOI: 10.1038/ncomms8951.
|
[24] |
ZHOU C, QIAN W, LI J, et al. High glucose microenvironment accelerates tumor growth via SREBP1-autophagy axis in pancreatic cancer[J]. J Exp Clin Cancer Res, 2019, 38(1): 302. DOI: 10.1186/s13046-019-1288-7.
|
[25] |
RAHN S, ZIMMERMANN V, VIOL F, et al. Diabetes as risk factor for pancreatic cancer: Hyperglycemia promotes epithelial-mesenchymal-transition and stem cell properties in pancreatic ductal epithelial cells[J]. Cancer Lett, 2018, 415: 129-150. DOI: 10.1016/j.canlet.2017.12.004.
|
[26] |
LI W, ZHANG L, CHEN X, et al. Hyperglycemia promotes the epithelial-mesenchymal transition of pancreatic cancer via hydrogen peroxide[J]. Oxid Med Cell Longev, 2016, 2016: 5190314. DOI: 10.1155/2016/5190314.
|
[27] |
KISS K, BAGHY K, SPISÁK S, et al. Chronic hyperglycemia induces trans-differentiation of human pancreatic stellate cells and enhances the malignant molecular communication with human pancreatic cancer cells[J]. PLoS One, 2015, 10(5): e0128059. DOI: 10.1371/journal.pone.0128059.
|
[28] |
HAN L, MA Q, LI J, et al. High glucose promotes pancreatic cancer cell proliferation via the induction of EGF expression and transactivation of EGFR[J]. PLoS One, 2011, 6(11): e27074. DOI: 10.1371/journal.pone.0027074.
|
[29] |
DUAN Q, LI H, GAO C, et al. High glucose promotes pancreatic cancer cells to escape from immune surveillance via AMPK-Bmi1-GATA2-MICA/B pathway[J]. J Exp Clin Cancer Res, 2019, 38(1): 192. DOI: 10.1186/s13046-019-1209-9.
|
[30] |
WU D, HU D, CHEN H, et al. Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer[J]. Nature, 2018, 559(7715): 637-641. DOI: 10.1038/s41586-018-0350-5.
|
[31] |
INCIO J, LIU H, SUBOJ P, et al. Obesity-induced inflammation and desmoplasia promote pancreatic cancer progression and resistance to chemotherapy[J]. Cancer Discov, 2016, 6(8): 852-869. DOI: 10.1158/2159-8290.CD-15-1177.
|
[32] |
INCIO J, TAM J, RAHBARI NN, et al. PlGF/VEGFR-1 signaling promotes macrophage polarization and accelerated tumor progression in obesity[J]. Clin Cancer Res, 2016, 22(12): 2993-3004. DOI: 10.1158/1078-0432.CCR-15-1839.
|
[33] |
WHATCOTT CJ, DIEP CH, JIANG P, et al. Desmoplasia in primary tumors and metastatic lesions of pancreatic cancer[J]. Clin Cancer Res, 2015, 21(15): 3561-3568. DOI: 10.1158/1078-0432.CCR-14-1051.
|
[34] |
SCHMITZ J, DITTMAR IC, BROCKMANN JD, et al. Defense against reactive carbonyl species involves at least three subcellular compartments where individual components of the system respond to cellular sugar status[J]. Plant Cell, 2017, 29(12): 3234-3254. DOI: 10.1105/tpc.17.00258.
|
[35] |
YAO D, BROWNLEE M. Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands[J]. Diabetes, 2010, 59(1): 249-255. DOI: 10.2337/db09-0801.
|
[36] |
DINORCIA J, LEE MK, MOROZIEWICZ DN, et al. RAGE gene deletion inhibits the development and progression of ductal neoplasia and prolongs survival in a murine model of pancreatic cancer[J]. J Gastrointest Surg, 2012, 16(1): 104-112; discussion 112. DOI: 10.1007/s11605-011-1754-9.
|
[37] |
SWAMI P, THIYAGARAJAN S, VIDGER A, et al. RAGE up-regulation differently affects cell proliferation and migration in pancreatic cancer cells[J]. Int J Mol Sci, 2020, 21(20): 7723. DOI: 10.3390/ijms21207723.
|
[38] |
LECLERC E, VETTER SW. The role of S100 proteins and their receptor RAGE in pancreatic cancer[J]. Biochim Biophys Acta, 2015, 1852(12): 2706-2711. DOI: 10.1016/j.bbadis.2015.09.022.
|
[39] |
MENINI S, IACOBINI C, DE LATOULIERE L, et al. The advanced glycation end-product NE-carboxymethyllysine promotes progression of pancreatic cancer: implications for diabetes-associated risk and its prevention[J]. J Pathol, 2018, 245(2): 197-208. DOI: 10.1002/path.5072.
|
[40] |
KANG R, HOU W, ZHANG Q, et al. RAGE is essential for oncogenic KRAS-mediated hypoxic signaling in pancreatic cancer[J]. Cell Death Dis, 2014, 5: e1480. DOI: 10.1038/cddis.2014.445.
|
[41] |
MENINI S, IACOBINI C, DE LATOULIERE L, et al. Diabetes promotes invasive pancreatic cancer by increasing systemic and tumour carbonyl stress in KrasG12D/+ mice[J]. J Exp Clin Cancer Res, 2020, 39(1): 152. DOI: 10.1186/s13046-020-01665-0.
|
[42] |
AGGARWAL G, RAMACHANDRAN V, JAVEED N, et al. Adrenomedullin is up-regulated in patients with pancreatic cancer and causes insulin resistance in β cells and mice[J]. Gastroenterology, 2012, 143(6): 1510-1517. DOI: 10.1053/j.gastro.2012.08.044.
|
[43] |
PANG W, YAO W, DAI X, et al. Pancreatic cancer-derived exosomal microRNA-19a induces β-cell dysfunction by targeting ADCY1 and EPAC2[J]. Int J Biol Sci, 2021, 17(13): 3622-3633. DOI: 10.7150/ijbs.56271.
|
[44] |
TAVANO F, FONTANA A, MAZZA T, et al. Early-Onset diabetes as risk factor for pancreatic cancer: mirna expression profiling in plasma uncovers a role for mir-20b-5p, mir-29a, and mir-18a-5p in diabetes of recent diagnosis[J]. Front Oncol, 2020, 10: 1567. DOI: 10.3389/fonc.2020.01567.
|
[45] |
SU J, PANG W, ZHANG A, et al. Exosomal miR-19a decreases insulin production by targeting Neurod1 in pancreatic cancer associated diabetes[J]. Mol Biol Rep, 2022, 49(3): 1711-1720. DOI: 10.1007/s11033-021-06980-z.
|
[46] |
ŠKRHA J, BUŠEK P, UHROVÁ J, et al. Lower plasma levels of glucose-dependent insulinotropic peptide (GIP) and pancreatic polypeptide (PP) in patients with ductal adenocarcinoma of the pancreas and their relation to the presence of impaired glucoregulation and weight loss[J]. Pancreatology, 2017, 17(1): 89-94. DOI: 10.1016/j.pan.2016.12.004.
|
[47] |
ZHANG Y, HUANG S, LI P, et al. Pancreatic cancer-derived exosomes suppress the production of GIP and GLP-1 from STC-1 cells in vitro by down-regulating the PCSK1/3[J]. Cancer Lett, 2018, 431: 190-200. DOI: 10.1016/j.canlet.2018.05.027.
|
[48] |
JAVEED N, SAGAR G, DUTTA SK, et al. Pancreatic cancer-derived exosomes cause paraneoplastic β-cell dysfunction[J]. Clin Cancer Res, 2015, 21(7): 1722-1733. DOI: 10.1158/1078-0432.CCR-14-2022.
|
[49] |
WANG L, ZHANG B, ZHENG W, et al. Exosomes derived from pancreatic cancer cells induce insulin resistance in C2C12 myotube cells through the PI3K/Akt/FoxO1 pathway[J]. Sci Rep, 2017, 7(1): 5384. DOI: 10.1038/s41598-017-05541-4.
|
[50] |
American Diabetes Association. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2021[J]. Diabetes Care, 2021, 44(Suppl 1): S15-S33. DOI: 10.2337/dc21-S002.
|
[51] |
CARRERAS-TORRES R, JOHANSSON M, GABORIEAU V, et al. The role of obesity, type 2 diabetes, and metabolic factors in pancreatic cancer: a Mendelian randomization study[J]. J Natl Cancer Inst, 2017, 109(9): djx012. DOI: 10.1093/jnci/djx012.
|