[1] |
SIEGEL RL, MILLER KD, JEMAL A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1): 7-30. DOI: 10.3322/caac.21590.
|
[2] |
DEMIR IE, CEYHAN GO, LIEBL F, et al. Neural invasion in pancreatic cancer: the past, present and future[J]. Cancers (Basel), 2010, 2(3): 1513-1527. DOI: 10.3390/cancers2031513.
|
[3] |
CARRER A, TREFELY S, ZHAO S, et al. Acetyl-CoA metabolism supports multistep pancreatic tumorigenesis[J]. Cancer Discov, 2019, 9(3): 416-435. DOI: 10.1158/2159-8290.CD-18-0567.
|
[4] |
STYLIANOPOULOS T, MARTIN JD, CHAUHAN VP, et al. Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors[J]. Proc Natl Acad Sci U S A, 2012, 109(38): 15101-15108. DOI: 10.1073/pnas.1213353109.
|
[5] |
HALBROOK CJ, LYSSIOTIS CA. Employing metabolism to improve the diagnosis and treatment of pancreatic cancer[J]. Cancer Cell, 2017, 31(1): 5-19. DOI: 10.1016/j.ccell.2016.12.006.
|
[6] |
ENTSCHLADEN F, PALM D, NIGGEMANN B, et al. The cancer's nervous tooth: Considering the neuronal crosstalk within tumors[J]. Semin Cancer Biol, 2008, 18(3): 171-175. DOI: 10.1016/j.semcancer.2007.12.004.
|
[7] |
SALOMAN JL, ALBERS KM, LI D, et al. Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer[J]. Proc Natl Acad Sci U S A, 2016, 113(11): 3078-3083. DOI: 10.1073/pnas.1512603113.
|
[8] |
SULLIVAN MR, MATTAINI KR, DENNSTEDT EA, et al. Increased serine synthesis provides an advantage for tumors arising in tissues where serine levels are limiting[J]. Cell Metab, 2019, 29(6): 1410-1421.e4. DOI: 10.1016/j.cmet.2019.02.015.
|
[9] |
YANG MW, TAO LY, JIANG YS, et al. Perineural invasion reprograms the immune microenvironment through cholinergic signaling in pancreatic ductal adenocarcinoma[J]. Cancer Res, 2020, 80(10): 1991-2003. DOI: 10.1158/0008-5472.CAN-19-2689.
|
[10] |
RENZ BW, TAKAHASHI R, TANAKA T, et al. β2 Adrenergic-neurotrophin feedforward loop promotes pancreatic cancer[J]. Cancer Cell, 2018, 33(1): 75-90.e7. DOI: 10.1016/j.ccell.2017.11.007.
|
[11] |
HUANG C, LI Y, GUO Y, et al. MMP1/PAR1/SP/NK1R paracrine loop modulates early perineural invasion of pancreatic cancer cells[J]. Theranostics, 2018, 8(11): 3074-3086. DOI: 10.7150/thno.24281.
|
[12] |
FRANCESCONE R, BARBOSA VENDRAMINI-COSTA D, FRANCO-BARRAZA J, et al. Netrin G1 promotes pancreatic tumorigenesis through cancer-associated fibroblast-driven nutritional support and immunosuppression[J]. Cancer Discov, 2021, 11(2): 446-479. DOI: 10.1158/2159-8290.CD-20-0775.
|
[13] |
KAMPHORST JJ, NOFAL M, COMMISSO C, et al. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein[J]. Cancer Res, 2015, 75(3): 544-553. DOI: 10.1158/0008-5472.CAN-14-2211.
|
[14] |
MADDOCKS OD, BERKERS CR, MASON SM, et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells[J]. Nature, 2013, 493(7433): 542-546. DOI: 10.1038/nature11743.
|
[15] |
SAMANTA D, PARK Y, ANDRABI SA, et al. PHGDH expression is required for mitochondrial redox homeostasis, breast cancer stem cell maintenance, and lung metastasis[J]. Cancer Res, 2016, 76(15): 4430-4442. DOI: 10.1158/0008-5472.CAN-16-0530.
|
[16] |
BAO XR, ONG SE, GOLDBERGER O, et al. Mitochondrial dysfunction remodels one-carbon metabolism in human cells[J]. Elife, 2016, 5: e10575. DOI: 10.7554/eLife.10575.
|
[17] |
BEN-SAHRA I, HOXHAJ G, RICOULT S, et al. mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle[J]. Science, 2016, 351(6274): 728-733. DOI: 10.1126/science.aad0489.
|
[18] |
BANH RS, BIANCUR DE, YAMAMOTO K, et al. Neurons release serine to support mrna translation in pancreatic cancer[J]. Cell, 2020, 183(5): 1202-1218.e25. DOI: 10.1016/j.cell.2020.10.016.
|
[19] |
SONG YS, LEE HJ, PROSSELKOV P, et al. Trans-induced cis interaction in the tripartite NGL-1, netrin-G1 and LAR adhesion complex promotes development of excitatory synapses[J]. J Cell Sci, 2013, 126(Pt 21): 4926-4938. DOI: 10.1242/jcs.129718.
|
[20] |
NISHI K, SUZUKI M, YAMAMOTO N, et al. Glutamine deprivation enhances acetyl-coa carboxylase inhibitor-induced death of human pancreatic cancer cells[J]. Anticancer Res, 2018, 38(12): 6683-6689. DOI: 10.21873/anticanres.13036.
|
[21] |
de COUCK M, MARÉCHAL R, MOORTHAMERS S, et al. Vagal nerve activity predicts overall survival in metastatic pancreatic cancer, mediated by inflammation[J]. Cancer Epidemiol, 2016, 40: 47-51. DOI: 10.1016/j.canep.2015.11.007.
|
[22] |
RENZ BW, TANAKA T, SUNAGAWA M, et al. Cholinergic signaling via muscarinic receptors directly and indirectly suppresses pancreatic tumorigenesis and cancer stemness[J]. Cancer Discov, 2018, 8(11): 1458-1473. DOI: 10.1158/2159-8290.CD-18-0046.
|
[23] |
WEDDLE DL, TITHOFF P, WILLIAMS M, et al. Beta-adrenergic growth regulation of human cancer cell lines derived from pancreatic ductal carcinomas[J]. Carcinogenesis, 2001, 22(3): 473-479. DOI: 10.1093/carcin/22.3.473.
|
[24] |
KIM-FUCHS C, LE CP, PIMENTEL MA, et al. Chronic stress accelerates pancreatic cancer growth and invasion: a critical role for beta-adrenergic signaling in the pancreatic microenvironment[J]. Brain Behav Immun, 2014, 40: 40-47. DOI: 10.1016/j.bbi.2014.02.019.
|
[25] |
ZAHALKA AH, ARNAL-ESTAPÉ A, MARYANOVICH M, et al. Adrenergic nerves activate an angio-metabolic switch in prostate cancer[J]. Science, 2017, 358(6361): 321-326. DOI: 10.1126/science.aah5072.
|
[26] |
PU J, ZHANG X, LUO H, et al. Adrenaline promotes epithelial-to-mesenchymal transition via HuR-TGFβ regulatory axis in pancreatic cancer cells and the implication in cancer prognosis[J]. Biochem Biophys Res Commun, 2017, 493(3): 1273-1279. DOI: 10.1016/j.bbrc.2017.09.146.
|
[27] |
XIAO MB, JIN DD, JIAO YJ, et al. β2-AR regulates the expression of AKR1B1 in human pancreatic cancer cells and promotes their proliferation via the ERK1/2 pathway[J]. Mol Biol Rep, 2018, 45(6): 1863-1871. DOI: 10.1007/s11033-018-4332-3.
|
[28] |
MUÑOZ M, ROSSO M. The NK-1 receptor antagonist aprepitant as a broad spectrum antitumor drug[J]. Invest New Drugs, 2010, 28(2): 187-193. DOI: 10.1007/s10637-009-9218-8.
|
[29] |
HENNIG IM, LAISSUE JA, HORISBERGER U, et al. Substance-P receptors in human primary neoplasms: tumoral and vascular localization[J]. Int J Cancer, 1995, 61(6): 786-792. DOI: 10.1002/ijc.2910610608.
|
[30] |
MUÑOZ M, ROSSO M, COVEÑAS R. The NK-1 receptor: a new target in cancer therapy[J]. Curr Drug Targets, 2011, 12(6): 909-921. DOI: 10.2174/138945011795528796.
|
[31] |
MEDRANO S, GRUENSTEIN E, DIMLICH RV. Substance P receptors on human astrocytoma cells are linked to glycogen breakdown[J]. Neurosci Lett, 1994, 167(1-2): 14-18. DOI: 10.1016/0304-3940(94)91017-0.
|
[32] |
LI X, MA G, MA Q, et al. Neurotransmitter substance P mediates pancreatic cancer perineural invasion via NK-1R in cancer cells[J]. Mol Cancer Res, 2013, 11(3): 294-302. DOI: 10.1158/1541-7786.MCR-12-0609.
|
[33] |
HESSMANN E, BUCHHOLZ SM, DEMIR IE, et al. Microenvironmental determinants of pancreatic cancer[J]. Physiol Rev, 2020, 100(4): 1707-1751. DOI: 10.1152/physrev.00042.2019.
|
[34] |
DEMIR IE, FRIESS H, CEYHAN GO. Nerve-cancer interactions in the stromal biology of pancreatic cancer[J]. Front Physiol, 2012, 3: 97. DOI: 10.3389/fphys.2012.00097.
|
[35] |
MASTRANTONIO R, YOU H, TAMAGNONE L. Semaphorins as emerging clinical biomarkers and therapeutic targets in cancer[J]. Theranostics, 2021, 11(7): 3262-3277. DOI: 10.7150/thno.54023.
|
[36] |
FOLEY K, RUCKI AA, XIAO Q, et al. Semaphorin 3D autocrine signaling mediates the metastatic role of annexin A2 in pancreatic cancer[J]. Sci Signal, 2015, 8(388): ra77. DOI: 10.1126/scisignal.aaa5823.
|
[37] |
JURCAK NR, RUCKI AA, MUTH S, et al. Axon guidance molecules promote perineural invasion and metastasis of orthotopic pancreatic tumors in mice[J]. Gastroenterology, 2019, 157(3): 838-850.e6. DOI: 10.1053/j.gastro.2019.05.065.
|
[38] |
CEYHAN GO, SCHÄFER KH, KERSCHER AG, et al. Nerve growth factor and artemin are paracrine mediators of pancreatic neuropathy in pancreatic adenocarcinoma[J]. Ann Surg, 2010, 251(5): 923-931. DOI: 10.1097/SLA.0b013e3181d974d4.
|
[39] |
ITO Y, OKADA Y, SATO M, et al. Expression of glial cell line-derived neurotrophic factor family members and their receptors in pancreatic cancers[J]. Surgery, 2005, 138(4): 788-794. DOI: 10.1016/j.surg.2005.07.007.
|
[40] |
GIL Z, CAVEL O, KELLY K, et al. Paracrine regulation of pancreatic cancer cell invasion by peripheral nerves[J]. J Natl Cancer Inst, 2010, 102(2): 107-118. DOI: 10.1093/jnci/djp456.
|
[41] |
CAVEL O, SHOMRON O, SHABTAY A, et al. Endoneurial macrophages induce perineural invasion of pancreatic cancer cells by secretion of GDNF and activation of RET tyrosine kinase receptor[J]. Cancer Res, 2012, 72(22): 5733-5743. DOI: 10.1158/0008-5472.CAN-12-0764.
|
[42] |
ZHANG JF, TAO LY, YANG MW, et al. CD74 promotes perineural invasion of cancer cells and mediates neuroplasticity via the AKT/EGR-1/GDNF axis in pancreatic ductal adenocarcinoma[J]. Cancer Lett, 2021, 508: 47-58. DOI: 10.1016/j.canlet.2021.03.016.
|