[1] |
MARTIN-MATEOS R, ALVAREZ-MON M, ALBILLOS A. Dysfunctional immune response in acute-on-chronic liver failure: It takes two to tango[J]. Front Immunol, 2019, 10: 973. DOI: 10.3389/fimmu.2019.00973.
|
[2] |
GUSTOT T, STADLBAUER V, LALEMAN W, et al. Transition to decompensation and acute-on-chronic liver failure: Role of predisposing factors and precipitating events[J]. J Hepatol, 2021, 75(Suppl 1): S36-S48. DOI: 10.1016/j.jhep.2020.12.005.
|
[3] |
ALBILLOS A, LARIO M, ÁLVAREZ-MON M. Cirrhosis-associated immune dysfunction: distinctive features and clinical relevance[J]. J Hepatol, 2014, 61(6): 1385-1396. DOI: 10.1016/j.jhep.2014.08.010.
|
[4] |
ARROYO V, ANGELI P, MOREAU R, et al. The systemic inflammation hypothesis: Towards a new paradigm of acute decompensation and multiorgan failure in cirrhosis[J]. J Hepatol, 2021, 74(3): 670-685. DOI: 10.1016/j.jhep.2020.11.048.
|
[5] |
TREBICKA J, FERNANDEZ J, PAPP M, et al. PREDICT identifies precipitating events associated with the clinical course of acutely decompensated cirrhosis[J]. J Hepatol, 2021, 74(5): 1097-1108. DOI: 10.1016/j.jhep.2020.11.019.
|
[6] |
XU XY, DING HG, LI WG, et al. Guidelines on the management of ascites and complications in cirrhosis[J]. J Clin Hepatol, 2017, 33(10): 1847-1863. DOI: 10.3969/j.issn.1001-5256. 2017.10.003.
徐小元, 丁惠国, 李文刚, 等. 肝硬化腹水及相关并发症的诊疗指南[J]. 临床肝胆病杂志, 2017, 33(10): 1847-1863. DOI: 10.3969/j.issn.1001-5256. 2017.10.003.
|
[7] |
XU X, TAN J, WANG H, et al. Risk stratification score to predict readmission of patients with acute decompensated cirrhosis within 90 days[J]. Front Med (Lausanne), 2021, 8: 646875. DOI: 10.3389/fmed.2021.646875.
|
[8] |
D'AMICO G, PASTA L, MORABITO A, et al. Competing risks and prognostic stages of cirrhosis: a 25-year inception cohort study of 494 patients[J]. Aliment Pharmacol Ther, 2014, 39(10): 1180-1193. DOI: 10.1111/apt.12721.
|
[9] |
ZHANG DQ, ZHENG RD, LIN MH, et al. Influencing factors for the 90-day prognosis of patients with HBV-related acute-on-chronic liver failure[J]. J Clin Hepatol, 2021, 37(10): 2316-2319. DOI: 10.3969/j.issn.1001-5256.2021.10.011.
张冬青, 郑瑞丹, 林明华, 等. HBV相关慢加急性肝衰竭患者90天预后影响因素分析[J]. 临床肝胆病杂志, 2021, 37(10): 2316-2319. DOI: 10.3969/j.issn.1001-5256.2021.10.011.
|
[10] |
IRVINE K, RATNASEKERA I, POWELL E, et al. Causes and consequences of innate immune dysfunction in cirrhosis[J]. Frontiers in immunology, 2019, 10: 293. DOI: 10.1371/ journal. pone. 0157371.
|
[11] |
BERNARDI M, MOREAU R, ANGELI P, et al. Mechanisms of decompensation and organ failure in cirrhosis: From peripheral arterial vasodilation to systemic inflammation hypothesis[J]. J Hepatol, 2015, 63(5): 1272-1284. DOI: 10.1016/j.jhep.2015.07.004.
|
[12] |
ALBILLOS A, MARTIN-MATEOS R, van der MERWE S, et al. Cirrhosis-associated immune dysfunction[J]. Nat Rev Gastroenterol Hepatol, 2022, 19(2): 112-134. DOI: 10.1038/s41575-021-00520-7.
|
[13] |
WIEST R, LAWSON M, GEUKING M. Pathological bacterial translocation in liver cirrhosis[J]. J Hepatol, 2014, 60(1): 197-209. DOI: 10.1016/j.jhep.2013.07.044.
|
[14] |
TREBICKA J, MACNAUGHTAN J, SCHNABL B, et al. The microbiota in cirrhosis and its role in hepatic decompensation[J]. J Hepatol, 2021, 75(Suppl 1): S67-S81. DOI: 10.1016/j.jhep.2020.11.013.
|
[15] |
ALBILLOS A, de LA HERA A, GONZÁLEZ M, et al. Increased lipopolysaccharide binding protein in cirrhotic patients with marked immune and hemodynamic derangement[J]. Hepatology, 2003, 37(1): 208-217. DOI: 10.1053/jhep.2003.50038.
|
[16] |
BAJAJ JS, THACKER LR, FAGAN A, et al. Gut microbial RNA and DNA analysis predicts hospitalizations in cirrhosis[J]. JCI Insight, 2018, 3(5): e98019. DOI: 10.1172/jci.insight.98019.
|
[17] |
MASLENNIKOV R, PAVLOV C, IVASHKIN V. Small intestinal bacterial overgrowth in cirrhosis: systematic review and meta-analysis[J]. Hepatol Int, 2018, 12(6): 567-576. DOI: 10.1007/s12072-018-9898-2.
|
[18] |
SHAH A, SHANAHAN E, MACDONALD GA, et al. Systematic Review and Meta-Analysis: Prevalence of small intestinal bacterial overgrowth in chronic liver disease[J]. Semin Liver Dis, 2017, 37(4): 388-400. DOI: 10.1055/s-0037-1608832.
|
[19] |
MUÑOZ L, ALBILLOS A, NIETO M, et al. Mesenteric Th1 polarization and monocyte TNF-alpha production: first steps to systemic inflammation in rats with cirrhosis[J]. Hepatology, 2005, 42(2): 411-419. DOI: 10.1002/hep.20799.
|
[20] |
LI X, HE C, LI N, et al. The interplay between the gut microbiota and NLRP3 activation affects the severity of acute pancreatitis in mice[J]. Gut Microbes, 2020, 11(6): 1774-1789. DOI: 10.1080/19490976.2020.1770042.
|
[21] |
RAINER F, HORVATH A, SANDAHL TD, et al. Soluble CD163 and soluble mannose receptor predict survival and decompensation in patients with liver cirrhosis, and correlate with gut permeability and bacterial translocation[J]. Aliment Pharmacol Ther, 2018, 47(5): 657-664. DOI: 10.1111/apt.14474.
|
[22] |
LECLERCQ S, CANI PD, NEYRINCK AM, et al. Role of intestinal permeability and inflammation in the biological and behavioral control of alcohol-dependent subjects[J]. Brain Behav Immun, 2012, 26(6): 911-918. DOI: 10.1016/j.bbi.2012.04.001.
|
[23] |
LECLERCQ S, de SAEGER C, DELZENNE N, et al. Role of inflammatory pathways, blood mononuclear cells, and gut-derived bacterial products in alcohol dependence[J]. Biol Psychiatry, 2014, 76(9): 725-733. DOI: 10.1016/j.biopsych.2014.02.003.
|
[24] |
MOOKERJEE RP, STADLBAUER V, LIDDER S, et al. Neutrophil dysfunction in alcoholic hepatitis superimposed on cirrhosis is reversible and predicts the outcome[J]. Hepatology, 2007, 46(3): 831-840. DOI: 10.1002/hep.21737.
|
[25] |
KORF H, DU PLESSIS J, van PELT J, et al. Inhibition of glutamine synthetase in monocytes from patients with acute-on-chronic liver failure resuscitates their antibacterial and inflammatory capacity[J]. Gut, 2019, 68(10): 1872-1883. DOI: 10.1136/gutjnl-2018-316888
|
[26] |
PIANO S, MORANDO F, CARRETTA G, et al. Predictors of early readmission in patients with cirrhosis after the resolution of bacterial infections[J]. Am J Gastroenterol, 2017, 112(10): 1575-1583. DOI: 10.1038/ajg.2017.253.
|
[27] |
GRAUPERA I, SOLÀ E, FABRELLAS N, et al. Urine monocyte chemoattractant protein-1 is an independent predictive factor of hospital readmission and survival in cirrhosis[J]. PLoS One, 2016, 11(6): e0157371. DOI: 10.1371/journal.pone.0157371.
|
[28] |
TREBICKA J, AMOROS A, PITARCH C, et al. Addressing profiles of systemic inflammation across the different clinical phenotypes of acutely decompensated cirrhosis[J]. Front Immunol, 2019, 10: 476. DOI: 10.3389/fimmu.2019.00476.
|
[29] |
FERNÁNDEZ J, ACEVEDO J, WIEST R, et al. Bacterial and fungal infections in acute-on-chronic liver failure: prevalence, characteristics and impact on prognosis[J]. Gut, 2018, 67(10): 1870-1880. DOI: 10.1136/gutjnl-2017-314240.
|
[30] |
CLÀRIA J, STAUBER RE, COENRAAD MJ, et al. Systemic inflammation in decompensated cirrhosis: Characterization and role in acute-on-chronic liver failure[J]. Hepatology, 2016, 64(4): 1249-1264. DOI: 10.1002/hep.28740.
|
[31] |
van WYNGENE L, VANDEWALLE J, LIBERT C. Reprogramming of basic metabolic pathways in microbial sepsis: therapeutic targets at last?[J]. EMBO Mol Med, 2018, 10(8): e8712. DOI: 10.15252/emmm.201708712.
|
[32] |
MOREAU R, CLÀRIA J, AGUILAR F, et al. Blood metabolomics uncovers inflammation-associated mitochondrial dysfunction as a potential mechanism underlying ACLF[J]. J Hepatol, 2020, 72(4): 688-701. DOI: 10.1016/j.jhep.2019.11.009.
|
[33] |
ZHANG IW, CURTO A, LÓPEZ-VICARIO C, et al. Mitochondrial dysfunction governs immunometabolism in leukocytes of patients with acute-on-chronic liver failure[J]. J Hepatol, 2022, 76(1): 93-106. DOI: 10.1016/j.jhep.2021.08.009.
|
[34] |
ENGELMANN C, CLÀRIA J, SZABO G, et al. Pathophysiology of decompensated cirrhosis: Portal hypertension, circulatory dysfunction, inflammation, metabolism and mitochondrial dysfunction[J]. J Hepatol, 2021, 75(Suppl 1): S49-S66. DOI: 10.1016/j.jhep.2021.01.002.
|
[35] |
BELLOT P, GARCÍA-PAGÁN JC, FRANCÉS R, et al. Bacterial DNA translocation is associated with systemic circulatory abnormalities and intrahepatic endothelial dysfunction in patients with cirrhosis[J]. Hepatology, 2010, 52(6): 2044-2052. DOI: 10.1002/hep.23918.
|
[36] |
GINÈS P, KRAG A, ABRALDES JG, et al. Liver cirrhosis[J]. The Lancet, 2021, 398(10308): 1359-1376. DOI: 10.1016/S0140-6736(21)01374-X
|
[37] |
YOTTI R, RIPOLL C, BENITO Y, et al. Left ventricular systolic function is associated with sympathetic nervous activity and markers of inflammation in cirrhosis[J]. Hepatology, 2017, 65(6): 2019-2030. DOI: 10.1002/hep.29104.
|
[38] |
COSTA D, SIMBRUNNER B, JACHS M, et al. Systemic inflammation increases across distinct stages of advanced chronic liver disease and correlates with decompensation and mortality[J]. J Hepatol, 2021, 74(4): 819-828. DOI: 10.1016/j.jhep.2020.10.004.
|
[39] |
MENESES G, CÁRDENAS G, ESPINOSA A, et al. Sepsis: developing new alternatives to reduce neuroinflammation and attenuate brain injury[J]. Ann N Y Acad Sci, 2019, 1437(1): 43-56. DOI: 10.1111/nyas.13985.
|
[40] |
REN C, YAO RQ, ZHANG H, et al. Sepsis-associated encephalopathy: a vicious cycle of immunosuppression[J]. J Neuroinflammation, 2020, 17(1): 14. DOI: 10.1186/s12974-020-1701-3.
|
[41] |
IBIDAPO-OBE O, STENGEL S, KÖSE-VOGEL N, et al. Mucosal-associated invariant T cells redistribute to the peritoneal cavity during spontaneous bacterial peritonitis and contribute to peritoneal inflammation[J]. Cell Mol Gastroenterol Hepatol, 2020, 9(4): 661-677. DOI: 10.1016/j.jcmgh.2020.01.003.
|