中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 39 Issue 2
Feb.  2023
Turn off MathJax
Article Contents

Research advances in nanomedicine in treatment of liver fibrosis

DOI: 10.3969/j.issn.1001-5256.2023.02.026
Research funding:

National Natural Science Foundation of China (General Project) (82274323)

More Information
  • Corresponding author: LI Hui, 1400124746@qq.com (ORCID: 0000-0002-5919-1396)
  • Received Date: 2022-11-03
  • Accepted Date: 2022-12-05
  • Published Date: 2023-02-20
  • Liver fibrosis (LF) is a pathological process of hepatic stellate cell (HSC) activation and excessive deposition of extracellular matrix caused by chronic liver injury and inflammation. HSC activation is the core mechanism of LF, and inhibiting HSC activation is the key to promoting the reversal of LF. In recent years, rapid development has been achieved for the application of nanomedicine targeting HSC in the treatment of LF. This article mainly introduces nanomedicine, the mechanism of action of nanomedicine in the treatment of LF, and potential targets, and it is pointed out that nanomedicine may become a new method for the treatment of LF.

     

  • loading
  • [1]
    FAN J, TONG G, CHEN X, et al. CK2 blockade alleviates liver fibrosis by suppressing activation of hepatic stellate cells via the Hedgehog pathway[J]. Br J Pharmacol, 2023, 180(1): 44-61. DOI: 10.1111/bph.15945.
    [2]
    GU L, ZHANG F, WU J, et al. Nanotechnology in drug delivery for liver fibrosis[J]. Front Mol Biosci, 2021, 8: 804396. DOI: 10.3389/fmolb.2021.804396.
    [3]
    AHMED T, LIU FF, HE C, et al. Optimizing the design of blood-brain barrier-penetrating polymer-lipid-hybrid nanoparticles for delivering anticancer drugs to glioblastoma[J]. Pharm Res, 2021, 38(11): 1897-1914. DOI: 10.1007/s11095-021-03122-9.
    [4]
    DANAEI M, DEHGHANKHOLD M, ATAEI S, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems[J]. Pharmaceutics, 2018, 10(2): 57. DOI: 10.3390/pharmaceutics10020057.
    [5]
    YUAN S, ZHANG Q. Application of one-dimensional nanomaterials in catalysis at the single-molecule and single-particle scale[J]. Front Chem, 2021, 9: 812287. DOI: 10.3389/fchem.2021.812287.
    [6]
    KOERNER J, HORVATH D, GROETTRUP M. Harnessing dendritic cells for poly (D, L-lactide-co-glycolide) microspheres (PLGA MS)-mediated anti-tumor therapy[J]. Front Immunol, 2019, 10: 707. DOI: 10.3389/fimmu.2019.00707.
    [7]
    GIANNITRAPANI L, SORESI M, BONDÌ ML, et al. Nanotechnology applications for the therapy of liver fibrosis[J]. World J Gastroenterol, 2014, 20(23): 7242-7251. DOI: 10.3748/wjg.v20.i23.7242.
    [8]
    ZHANG A, MENG K, LIU Y, et al. Absorption, distribution, metabolism, and excretion of nanocarriers in vivo and their influences[J]. Adv Colloid Interface Sci, 2020, 284: 102261. DOI: 10.1016/j.cis.2020.102261.
    [9]
    ZHANG YN, POON W, TAVARES AJ, et al. Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination[J]. J Control Release, 2016, 240: 332-348. DOI: 10.1016/j.jconrel.2016.01.020.
    [10]
    BARTNECK M, WARZECHA KT, TACKE F. Therapeutic targeting of liver inflammation and fibrosis by nanomedicine[J]. Hepatobiliary Surg Nutr, 2014, 3(6): 364-376. DOI: 10.3978/j.issn.2304-3881.2014.11.02.
    [11]
    PENG W, CHENG S, BAO Z, et al. Advances in the research of nanodrug delivery system for targeted treatment of liver fibrosis[J]. Biomed Pharmacother, 2021, 137: 111342. DOI: 10.1016/j.biopha.2021.111342.
    [12]
    SHEVTSOV M, ZHAO L, PROTZER U, et al. Applicability of metal nanoparticles in the detection and monitoring of hepatitis b virus infection[J]. Viruses, 2017, 9(7): 193. DOI: 10.3390/v9070193.
    [13]
    RIBERA J, VILCHES C, SANZ V, et al. Treatment of hepatic fibrosis in mice based on targeted plasmonic hyperthermia[J]. ACS Nano, 2021, 15(4): 7547-7562. DOI: 10.1021/acsnano.1c00988.
    [14]
    EL-BENDARY MA, AFIFI SS, MOHARAM ME, et al. Biosynthesis of silver nanoparticles using isolated Bacillus subtilis: characterization, antimicrobial activity, cytotoxicity, and their performance as antimicrobial agent for textile materials[J]. Prep Biochem Biotechnol, 2021, 51(1): 54-68. DOI: 10.1080/10826068.2020.1789992.
    [15]
    GAD SS, ABDELRAHIM DS, ISMAIL SH, et al. Selenium and silver nanoparticles: A new approach for treatment of bacterial and viral hepatic infections via modulating oxidative stress and DNA fragmentation[J]. J Biochem Mol Toxicol, 2022, 36(3): e22972. DOI: 10.1002/jbt.22972.
    [16]
    PENG F, TEE JK, SETYAWATI MI, et al. Inorganic nanomaterials as highly efficient inhibitors of cellular hepatic fibrosis[J]. ACS Appl Mater Interfaces, 2018, 10(38): 31938-31946. DOI: 10.1021/acsami.8b10527.
    [17]
    TEE JK, NG LY, KOH HY, et al. Titanium dioxide nanoparticles enhance leakiness and drug permeability in primary human hepatic sinusoidal endothelial cells[J]. Int J Mol Sci, 2018, 20(1): 35. DOI: 10.3390/ijms20010035.
    [18]
    KURNIAWAN DW, BOOIJINK R, PATER L, et al. Fibroblast growth factor 2 conjugated superparamagnetic iron oxide nanoparticles (FGF2-SPIONs) ameliorate hepatic stellate cells activation in vitro and acute liver injury in vivo[J]. J Control Release, 2020, 328: 640-652. DOI: 10.1016/j.jconrel.2020.09.041.
    [19]
    CORNU R, BÉDUNEAU A, MARTIN H. Influence of nanoparticles on liver tissue and hepatic functions: A review[J]. Toxicology, 2020, 430: 152344. DOI: 10.1016/j.tox.2019.152344.
    [20]
    GHARIEH A, KHOEE S, MAHDAVIAN AR. Emulsion and miniemulsion techniques in preparation of polymer nanoparticles with versatile characteristics[J]. Adv Colloid Interface Sci, 2019, 269: 152-186. DOI: 10.1016/j.cis.2019.04.010.
    [21]
    CHEN XF, JI S. Sorafenib attenuates fibrotic hepatic injury through mediating lysine crotonylation[J]. Drug Des Devel Ther, 2022, 16: 2133-2144. DOI: 10.2147/DDDT.S368306.
    [22]
    SUNG YC, LIU YC, CHAO PH, et al. Combined delivery of sorafenib and a MEK inhibitor using CXCR4-targeted nanoparticles reduces hepatic fibrosis and prevents tumor development[J]. Theranostics, 2018, 8(4): 894-905. DOI: 10.7150/thno.21168.
    [23]
    LI M, DU C, GUO N, et al. Composition design and medical application of liposomes[J]. Eur J Med Chem, 2019, 164: 640-653. DOI: 10.1016/j.ejmech.2019.01.007.
    [24]
    ULLAH A, CHEN G, YIBANG Z, et al. A new approach based on CXCR4-targeted combination liposomes for the treatment of liver fibrosis[J]. Biomater Sci, 2022, 10(10): 2650-2664. DOI: 10.1039/d2bm00242f.
    [25]
    KESHARWANI SS, KAUR S, TUMMALA H, et al. Multifunctional approaches utilizing polymeric micelles to circumvent multidrug resistant tumors[J]. Colloids Surf B Biointerfaces, 2019, 173: 581-590. DOI: 10.1016/j.colsurfb.2018.10.022.
    [26]
    DOU JY, JIANG YC, HU ZH, et al. Betulin targets lipin1/2-meidated P2X7 receptor as a therapeutic approach to attenuate lipid accumulation and metaflammation[J]. Biomol Ther (Seoul), 2022, 30(3): 246-256. DOI: 10.4062/biomolther.2021.136.
    [27]
    XU J, WANG X, ZHANG H, et al. Synthesis of triterpenoid derivatives and their anti-tumor and anti-hepatic fibrosis activities[J]. Nat Prod Res, 2020, 34(6): 766-772. DOI: 10.1080/14786419.2018.1499642.
    [28]
    LIU XY, LI D, LI TY, et al. Vitamin A - modified Betulin polymer micelles with hepatic targeting capability for hepatic fibrosis protection[J]. Eur J Pharm Sci, 2022, 174: 106189. DOI: 10.1016/j.ejps.2022.106189.
    [29]
    BAI X, SU G, ZHAI S. Recent advances in nanomedicine for the diagnosis and therapy of liver fibrosis[J]. Nanomaterials (Basel), 2020, 10(10): 1945. DOI: 10.3390/nano10101945.
    [30]
    ZAVORKA ME, CONNELLY CM, GROSELY R, et al. Inhibition of insulin-like growth factor II (IGF-II)-dependent cell growth by multidentate pentamannosyl 6-phosphate-based ligands targeting the mannose 6-phosphate/IGF-II receptor[J]. Oncotarget, 2016, 7(38): 62386-62410. DOI: 10.18632/oncotarget.11493.
    [31]
    KUMAR V, MONDAL G, DUTTA R, et al. Co-delivery of small molecule hedgehog inhibitor and miRNA for treating liver fibrosis[J]. Biomaterials, 2016, 76: 144-156. DOI: 10.1016/j.biomaterials.2015.10.047.
    [32]
    LI F, LI QH, WANG JY, et al. Effects of interferon-gamma liposomes targeted to platelet-derived growth factor receptor-beta on hepatic fibrosis in rats[J]. J Control Release, 2012, 159(2): 261-270. DOI: 10.1016/j.jconrel.2011.12.023.
    [33]
    ZHANG J, SHEN H, XU J, et al. Liver-targeted siRNA lipid nanoparticles treat hepatic cirrhosis by dual antifibrotic and anti-inflammatory activities[J]. ACS Nano, 2020, 14(5): 6305-6322. DOI: 10.1021/acsnano.0c02633.
    [34]
    ZHENG Y, LEFTHERIS K. Insights into protein-ligand interactions in integrin complexes: advances in structure determinations[J]. J Med Chem, 2020, 63(11): 5675-5696. DOI: 10.1021/acs.jmedchem.9b01869.
    [35]
    XU T, LU Z, XIAO Z, et al. Myofibroblast induces hepatocyte-to-ductal metaplasia via laminin-ɑvβ6 integrin in liver fibrosis[J]. Cell Death Dis, 2020, 11(3): 199. DOI: 10.1038/s41419-020-2372-9.
    [36]
    KITSUGI K, NORITAKE H, MATSUMOTO M, et al. Arg-Gly-Asp-binding integrins activate hepatic stellate cells via the hippo signaling pathway[J]. Cell Signal, 2022, 99: 110437. DOI: 10.1016/j.cellsig.2022.110437.
    [37]
    ZHOU L, LI Y, LIANG Q, et al. Combination therapy based on targeted nano drug co-delivery systems for liver fibrosis treatment: a review[J]. J Drug Target, 2022, 30(6): 577-588. DOI: 10.1080/1061186X.2022.2044485.
    [38]
    EL-MEZAYEN NS, EL-HADIDY WF, EL-REFAIE WM, et al. Oral vitamin-A-coupled valsartan nanomedicine: High hepatic stellate cell receptors accessibility and prolonged enterohepatic residence[J]. J Control Release, 2018, 283: 32-44. DOI: 10.1016/j.jconrel.2018.05.021.
    [39]
    CARRILLO-SEPULVEDA MA, KEEN HL, DAVIS DR, et al. Role of vascular smooth muscle PPARγ in regulating AT1 receptor signaling and angiotensin II-dependent hypertension[J]. PLoS One, 2014, 9(8): e103786. DOI: 10.1371/journal.pone.0103786.
    [40]
    UNO K, MIYAJIMA K, TOMA M, et al. CD44 expression in the bile duct epithelium is related to hepatic fibrosis in nonalcoholic steatohepatitis rats induced by a choline-deficient, methionine-lowered, L-amino acid diet[J]. J Toxicol Pathol, 2022, 35(2): 149-157. DOI: 10.1293/tox.2021-0069.
    [41]
    LUO J, ZHANG P, ZHAO T, et al. Golgi apparatus-targeted chondroitin-modified nanomicelles suppress hepatic stellate cell activation for the management of liver fibrosis[J]. ACS Nano, 2019, 13(4): 3910-3923. DOI: 10.1021/acsnano.8b06924.
    [42]
    LIANG H, LI Z, REN Z, et al. Light-triggered NO-releasing nanoparticles for treating mice with liver fibrosis[J]. Nano Research, 2020, 13(8): 2197-2202. DOI: 10.1007/s12274-020-2833-6.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(1)

    Article Metrics

    Article views (960) PDF downloads(116) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return