[1] |
ROEHLEN N, CROUCHET E, BAUMERT TF. Liver fibrosis: Mechanistic concepts and therapeutic perspectives[J]. Cells, 2020, 9(4): 875. DOI: 10.3390/cells9040875.
|
[2] |
PHAN AT, GOLDRATH AW, GLASS CK. Metabolic and epigenetic coordination of T cell and macrophage immunity[J]. Immunity, 2017, 46(5): 714-729. DOI: 10.1016/j.immuni.2017.04.016.
|
[3] |
O'NEILL LA, KISHTON RJ, RATHMELL J. A guide to immunometabolism for immunologists[J]. Nat Rev Immunol, 2016, 16(9): 553-565. DOI: 10.1038/nri.2016.70.
|
[4] |
van DER HEIDE D, WEISKIRCHEN R, BANSAL R. Therapeutic targeting of hepatic macrophages for the treatment of liver diseases[J]. Front Immunol, 2019, 10: 2852. DOI: 10.3389/fimmu.2019.02852.
|
[5] |
LI P, HE K, LI J, et al. The role of Kupffer cells in hepatic diseases[J]. Mol Immunol, 2017, 85: 222-229. DOI: 10.1016/j.molimm.2017.02.018.
|
[6] |
GUILLOT A, TACKE F. Liver macrophages: Old dogmas and new insights[J]. Hepatol Commun, 2019, 3(6): 730-743. DOI: 10.1002/hep4.1356.
|
[7] |
WANG C, MA C, GONG L, et al. Macrophage polarization and its role in liver disease[J]. Front Immunol, 2021, 12: 803037. DOI: 10.3389/fimmu.2021.803037.
|
[8] |
TACKE F. Targeting hepatic macrophages to treat liver diseases[J]. J Hepatol, 2017, 66(6): 1300-1312. DOI: 10.1016/j.jhep.2017.02.026.
|
[9] |
YUNNA C, MENGRU H, LEI W, et al. Macrophage M1/M2 polarization[J]. Eur J Pharmacol, 2020, 877: 173090. DOI: 10.1016/j.ejphar.2020.173090.
|
[10] |
WU K, MA J, ZHAN Y, et al. Down-regulation of microRNA-214 contributed to the enhanced mitochondrial transcription factor A and inhibited proliferation of colorectal cancer cells[J]. Cell Physiol Biochem, 2018, 49(2): 545-554. DOI: 10.1159/000492992.
|
[11] |
GONG J, LI J, DONG H, et al. Inhibitory effects of berberine on proinflammatory M1 macrophage polarization through interfering with the interaction between TLR4 and MyD88[J]. BMC Complement Altern Med, 2019, 19(1): 314. DOI: 10.1186/s12906-019-2710-6.
|
[12] |
WANG F, ZHANG S, JEON R, et al. Interferon gamma induces reversible metabolic reprogramming of M1 macrophages to sustain cell viability and pro-inflammatory activity[J]. EBioMedicine, 2018, 30: 303-316. DOI: 10.1016/j.ebiom.2018.02.009.
|
[13] |
SINGLA RD, WANG J, SINGLA DK. Regulation of Notch 1 signaling in THP-1 cells enhances M2 macrophage differentiation[J]. Am J Physiol Heart Circ Physiol, 2014, 307(11): H1634-H1642. DOI: 10.1152/ajpheart.00896.2013.
|
[14] |
WEI W, LI ZP, BIAN ZX, et al. Astragalus polysaccharide RAP induces macrophage phenotype polarization to M1 via the Notch signaling pathway[J]. Molecules, 2019, 24(10): 2016. DOI: 10.3390/molecules24102016.
|
[15] |
SHENG J, ZHANG B, CHEN Y, et al. Capsaicin attenuates liver fibrosis by targeting Notch signaling to inhibit TNF-α secretion from M1 macrophages[J]. Immunopharmacol Immunotoxicol, 2020, 42(6): 556-563. DOI: 10.1080/08923973.2020.1811308.
|
[16] |
SHAPOURI-MOGHADDAM A, MOHAMMADIAN S, VAZINI H, et al. Macrophage plasticity, polarization, and function in health and disease[J]. J Cell Physiol, 2018, 233(9): 6425-6440. DOI: 10.1002/jcp.26429.
|
[17] |
GAO S, ZHOU J, LIU N, et al. Curcumin induces M2 macrophage polarization by secretion IL-4 and/or IL-13[J]. J Mol Cell Cardiol, 2015, 85: 131-139. DOI: 10.1016/j.yjmcc.2015.04.025.
|
[18] |
LU H, WU L, LIU L, et al. Quercetin ameliorates kidney injury and fibrosis by modulating M1/M2 macrophage polarization[J]. Biochem Pharmacol, 2018, 154: 203-212. DOI: 10.1016/j.bcp.2018.05.007.
|
[19] |
DOU L, SHI X, HE X, et al. Macrophage phenotype and function in liver disorder[J]. Front Immunol, 2019, 10: 3112. DOI: 10.3389/fimmu.2019.03112.
|
[20] |
CHENG D, CHAI J, WANG H, et al. Hepatic macrophages: Key players in the development and progression of liver fibrosis[J]. Liver Int, 2021, 41(10): 2279-2294. DOI: 10.1111/liv.14940.
|
[21] |
SCHWABE RF, TABAS I, PAJVANI UB. Mechanisms of fibrosis development in nonalcoholic steatohepatitis[J]. Gastroenterology, 2020, 158(7): 1913-1928. DOI: 10.1053/j.gastro.2019.11.311.
|
[22] |
TSUCHIDA T, FRIEDMAN SL. Mechanisms of hepatic stellate cell activation[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(7): 397-411. DOI: 10.1038/nrgastro.2017.38.
|
[23] |
ROBERT S, GICQUEL T, VICTONI T, et al. Involvement of matrix metalloproteinases (MMPs) and inflammasome pathway in molecular mechanisms of fibrosis[J]. Biosci Rep, 2016, 36(4): e00360. DOI: 10.1042/BSR20160107.
|
[24] |
MEHTA KJ, FARNAUD SJ, SHARP PA. Iron and liver fibrosis: Mechanistic and clinical aspects[J]. World J Gastroenterol, 2019, 25(5): 521-538. DOI: 10.3748/wjg.v25.i5.521.
|
[25] |
ROTH KJ, COPPLE BL. Role of hypoxia-inducible factors in the development of liver fibrosis[J]. Cell Mol Gastroenterol Hepatol, 2015, 1(6): 589-597. DOI: 10.1016/j.jcmgh.2015.09.005.
|
[26] |
LIASKOU E, ZIMMERMANN HW, LI KK, et al. Monocyte subsets in human liver disease show distinct phenotypic and functional characteristics[J]. Hepatology, 2013, 57(1): 385-398. DOI: 10.1002/hep.26016.
|
[27] |
KISSELEVA T, BRENNER D. Molecular and cellular mechanisms of liver fibrosis and its regression[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(3): 151-166. DOI: 10.1038/s41575-020-00372-7.
|
[28] |
TACKE F, ZIMMERMANN HW. Macrophage heterogeneity in liver injury and fibrosis[J]. J Hepatol, 2014, 60(5): 1090-1096. DOI: 10.1016/j.jhep.2013.12.025.
|
[29] |
FENG M, DING J, WANG M, et al. Kupffer-derived matrix metalloproteinase-9 contributes to liver fibrosis resolution[J]. Int J Biol Sci, 2018, 14(9): 1033-1040. DOI: 10.7150/ijbs.25589.
|
[30] |
YU B, QIN SY, HU BL, et al. Resveratrol improves CCL4-induced liver fibrosis in mouse by upregulating endogenous IL-10 to reprogramme macrophages phenotype from M(LPS) to M(IL-4)[J]. Biomed Pharmacother, 2019, 117: 109110. DOI: 10.1016/j.biopha.2019.109110.
|
[31] |
VAN DEN BOSSCHE J, O'NEILL LA, MENON D. Macrophage immunometabolism: Where are we (going)?[J]. Trends Immunol, 2017, 38(6): 395-406. DOI: 10.1016/j.it.2017.03.001.
|
[32] |
CASTEGNA A, GISSI R, MENGA A, et al. Pharmacological targets of metabolism in disease: Opportunities from macrophages[J]. Pharmacol Ther, 2020, 210: 107521. DOI: 10.1016/j.pharmthera.2020.107521.
|
[33] |
FERNÁNDEZ-VELEDO S, CEPERUELO-MALLAFRÉ V, VENDRELL J. Rethinking succinate: an unexpected hormone-like metabolite in energy homeostasis[J]. Trends Endocrinol Metab, 2021, 32(9): 680-692. DOI: 10.1016/j.tem.2021.06.003.
|
[34] |
BIEGHS V, WALENBERGH SM, HENDRIKX T, et al. Trapping of oxidized LDL in lysosomes of Kupffer cells is a trigger for hepatic inflammation[J]. Liver Int, 2013, 33(7): 1056-1061. DOI: 10.1111/liv.12170.
|
[35] |
BIEGHS V, WOUTERS K, VAN GORP PJ, et al. Role of scavenger receptor A and CD36 in diet-induced nonalcoholic steatohepatitis in hyperlipidemic mice[J]. Gastroenterology, 2010, 138(7): 2477-2486. DOI: 10.1053/j.gastro.2010.02.051.
|
[36] |
LEROUX A, FERRERE G, GODIE V, et al. Toxic lipids stored by Kupffer cells correlates with their pro-inflammatory phenotype at an early stage of steatohepatitis[J]. J Hepatol, 2012, 57(1): 141-149. DOI: 10.1016/j.jhep.2012.02.028.
|
[37] |
KANAMORI Y, TANAKA M, ITOH M, et al. Iron-rich Kupffer cells exhibit phenotypic changes during the development of liver fibrosis in NASH[J]. iScience, 2021, 24(2): 102032. DOI: 10.1016/j.isci.2020.102032.
|
[38] |
HANDA P, THOMAS S, MORGAN-STEVENSON V, et al. Iron alters macrophage polarization status and leads to steatohepatitis and fibrogenesis[J]. J Leukoc Biol, 2019, 105(5): 1015-1026. DOI: 10.1002/JLB.3A0318-108R.
|
[39] |
LESLIE J, MACIA MG, LULI S, et al. c-Rel orchestrates energy-dependent epithelial and macrophage reprogramming in fibrosis[J]. Nat Metab, 2020, 2(11): 1350-1367. DOI: 10.1038/s42255-020-00306-2.
|
[40] |
XU F, GUO M, HUANG W, et al. Annexin A5 regulates hepatic macrophage polarization via directly targeting PKM2 and ameliorates NASH[J]. Redox Biol, 2020, 36: 101634. DOI: 10.1016/j.redox.2020.101634.
|
[41] |
GAO YS, QIAN MY, WEI QQ, et al. WZ66, a novel acetyl-CoA carboxylase inhibitor, alleviates nonalcoholic steatohepatitis (NASH) in mice[J]. Acta Pharmacol Sin, 2020, 41(3): 336-347. DOI: 10.1038/s41401-019-0310-0.
|
[42] |
WENG SY, SCHUPPAN D. AMPK regulates macrophage polarization in adipose tissue inflammation and NASH[J]. J Hepatol, 2013, 58(3): 619-621. DOI: 10.1016/j.jhep.2012.09.031.
|
[43] |
LOOMBA R, KAYALI Z, NOUREDDIN M, et al. GS-0976 reduces hepatic steatosis and fibrosis markers in patients with nonalcoholic fatty liver disease[J]. Gastroenterology, 2018, 155(5): 1463-1473. DOI: 10.1053/j.gastro.2018.07.027.
|
[44] |
FRANCQUE S, SZABO G, ABDELMALEK MF, et al. Nonalcoholic steatohepatitis: the role of peroxisome proliferator-activated receptors[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(1): 24-39. DOI: 10.1038/s41575-020-00366-5.
|
[45] |
ORFILA C, LEPERT JC, ALRIC L, et al. Immunohistochemical distribution of activated nuclear factor kappaB and peroxisome proliferator-activated receptors in carbon tetrachloride-induced chronic liver injury in rats[J]. Histochem Cell Biol, 2005, 123(6): 585-593. DOI: 10.1007/s00418-005-0785-2.
|
[46] |
STIENSTRA R, MANDARD S, TAN NS, et al. The Interleukin-1 receptor antagonist is a direct target gene of PPARalpha in liver[J]. J Hepatol, 2007, 46(5): 869-877. DOI: 10.1016/j.jhep.2006.11.019.
|
[47] |
IP E, FARRELL G, HALL P, et al. Administration of the potent PPARalpha agonist, Wy-14, 643, reverses nutritional fibrosis and steatohepatitis in mice[J]. Hepatology, 2004, 39(5): 1286-1296. DOI: 10.1002/hep.20170.
|
[48] |
GILGENKRANTZ H, MALLAT A, MOREAU R, et al. Targeting cell-intrinsic metabolism for antifibrotic therapy[J]. J Hepatol, 2021, 74(6): 1442-1454. DOI: 10.1016/j.jhep.2021.02.012.
|
[49] |
GALLI A, CRABB DW, CENI E, et al. Antidiabetic thiazolidinediones inhibit collagen synthesis and hepatic stellate cell activation in vivo and in vitro[J]. Gastroenterology, 2002, 122(7): 1924-1940. DOI: 10.1053/gast.2002.33666.
|
[50] |
RATZIU V, CHARLOTTE F, BERNHARDT C, et al. Long-term efficacy of rosiglitazone in nonalcoholic steatohepatitis: results of the fatty liver improvement by rosiglitazone therapy (FLIRT 2) extension trial[J]. Hepatology, 2010, 51(2): 445-453. DOI: 10.1002/hep.23270.
|
[51] |
MCMAHAN RH, WANG XX, CHENG LL, et al. Bile acid receptor activation modulates hepatic monocyte activity and improves nonalcoholic fatty liver disease[J]. J Biol Chem, 2013, 288(17): 11761-11770. DOI: 10.1074/jbc.M112.446575.
|
[52] |
YOUNOSSI ZM, RATZIU V, LOOMBA R, et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial[J]. Lancet, 2019, 394(10215): 2184-2196. DOI: 10.1016/S0140-6736(19)33041-7.
|