[1] |
SUNG H, FERLAY J, SIEGEL RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
|
[2] |
DING W, TAN YL, QIAN Y, et al. First-line targ veted therapies of advanced hepatocellular carcinoma: A Bayesian network analysis of randomized controlled trials[J]. PLoS One, 2020, 15(3): e0229492. DOI: 10.1371/journal.pone.0229492.
|
[3] |
ANASTASIADOU E, JACOB LS, SLACK FJ. Non-coding RNA networks in cancer[J]. Nat Rev Cancer, 2018, 18(1): 5-18. DOI: 10.1038/nrc.2017.99.
|
[4] |
AKBARI DILMAGHNAI N, SHOOREI H, SHARIFI G, et al. Non-coding RNAs modulate function of extracellular matrix proteins[J]. Biomed Pharmacother, 2021, 136: 111240. DOI: 10.1016/j.biopha.2021.111240.
|
[5] |
SHI TT, MORISHITA A, KOBARA H, et al. The role of long non-coding RNA and microRNA networks in hepatocellular carcinoma and its tumor microenvironment[J]. Int J Mol Sci, 2021, 22(19): 10630. DOI: 10.3390/ijms221910630.
|
[6] |
PU J, LI WC, WANG AM, et al. Long non-coding RNA HOMER3-AS1 drives hepatocellular carcinoma progression via modulating the behaviors of both tumor cells and macrophages[J]. Cell Death Dis, 2021, 12(12): 1103. DOI: 10.1038/s41419-021-04309-z.
|
[7] |
GIRALDO NA, SANCHEZ-SALAS R, PESKE JD, et al. The clinical role of the TME in solid cancer[J]. Br J Cancer, 2019, 120(1): 45-53. DOI: 10.1038/s41416-018-0327-z.
|
[8] |
PASCUT D, PRATAMA MY, VO NVT, et al. The crosstalk between tumor cells and the microenvironment in hepatocellular carcinoma: The role of exosomal microRNAs and their clinical implications[J]. Cancers, 2020, 12(4): 823. DOI: 10.3390/cancers12040823.
|
[9] |
JIA ZM, JIA JL, YAO LH, et al. Crosstalk of exosomal non-coding RNAs in the tumor microenvironment: Novel frontiers[J]. Front Immunol, 2022, 13: 900155. DOI: 10.3389/fimmu.2022.900155.
|
[10] |
XIA HM, HUANG ZY, LIU SQ, et al. Exosomal non-coding RNAs: Regulatory and therapeutic target of hepatocellular carcinoma[J]. Front Oncol, 2021, 11: 653846. DOI: 10.3389/fonc.2021.653846.
|
[11] |
DIENER C, HART M, KEHL T, et al. Quantitative and time-resolved miRNA pattern of early human T cell activation[J]. Nucleic Acids Res, 2020, 48(18): 10164-10183. DOI: 10.1093/nar/gkaa788.
|
[12] |
LIN YX, LIU S, SU L, et al. miR-570 inhibits proliferation, angiogenesis, and immune escape of hepatocellular carcinoma[J]. Cancer Biother Radiopharm, 2018, 33(6): 252-257. DOI: 10.1089/cbr.2017.2389.
|
[13] |
HAN W, LI N, LIU J, et al. microRNA-26b-5p enhances T cell responses by targeting PIM-2 in hepatocellular carcinoma[J]. Cell Signal, 2019, 59: 182-190. DOI: 10.1016/j.cellsig.2018.11.011.
|
[14] |
LI ZQ, WANG HY, ZENG QL, et al. p65/miR-23a/CCL22 axis regulated regulatory T cells recruitment in hepatitis B virus positive hepatocellular carcinoma[J]. Cancer Med, 2020, 9(2): 711-723. DOI: 10.1002/cam4.2611.
|
[15] |
WANG C, MA C, GONG LH, et al. Macrophage polarization and its role in liver disease[J]. Front Immunol, 2021, 12: 803037. DOI: 10.3389/fimmu.2021.803037.
|
[16] |
LIU NN, WANG XM, STEER CJ, et al. microRNA-206 promotes the recruitment of CD8+ T cells by driving M1 polarisation of Kupffer cells[J]. Gut, 2022, 71(8): 1642-1655. DOI: 10.1136/gutjnl-2021-324170.
|
[17] |
KE M, ZHANG Z, CONG L, et al. microRNA-148b-colony-stimulating factor-1 signaling-induced tumor-associated macrophage infiltration promotes hepatocellular carcinoma metastasis[J]. Biomed Pharmacother, 2019, 120: 109523. DOI: 10.1016/j.biopha.2019.109523.
|
[18] |
PIÑEIRO FERNÁNDEZ J, LUDDY KA, HARMON C, et al. Hepatic tumor microenvironments and effects on NK cell phenotype and function[J]. Int J Mol Sci, 2019, 20(17): 4131. DOI: 10.3390/ijms20174131.
|
[19] |
ZHANG QF, YIN WW, XIA Y, et al. Liver-infiltrating CD11b-CD27- NK subsets account for NK-cell dysfunction in patients with hepatocellular carcinoma and are associated with tumor progression[J]. Cell Mol Immunol, 2017, 14(10): 819-829. DOI: 10.1038/cmi.2016.28.
|
[20] |
SU ZX, YE XP, SHANG LM. miR-506 promotes natural killer cell cytotoxicity against human hepatocellular carcinoma cells by targeting STAT3[J]. Yonsei Med J, 2019, 60(1): 22-29. DOI: 10.3349/ymj.2019.60.1.22.
|
[21] |
CHEN EB, ZHOU ZJ, XIAO K, et al. The miR-561-5p/CX3CL1 signaling axis regulates pulmonary metastasis in hepatocellular carcinoma involving CX3CR1+ natural killer cells infiltration[J]. Theranostics, 2019, 9(16): 4779-4794. DOI: 10.7150/thno.32543.
|
[22] |
ZOU H, SHAO CX, ZHOU QY, et al. The role of lncRNAs in hepatocellular carcinoma: Opportunities as novel targets for pharmacological intervention[J]. Expert Rev Gastroenterol Hepatol, 2016, 10(3): 331-340. DOI: 10.1586/17474124.2016.1116382.
|
[23] |
YU Z, ZHAO H, FENG X, et al. Long non-coding RNA FENDRR acts as a miR-423-5p sponge to suppress the treg-mediated immune escape of hepatocellular carcinoma cells[J]. Mol Ther Nucleic Acids, 2019, 17: 516-529. DOI: 10.1016/j.omtn.2019.05.027.
|
[24] |
YAN K, FU Y, ZHU N, et al. Repression of lncRNA NEAT1 enhances the antitumor activity of CD8+T cells against hepatocellular carcinoma via regulating miR-155/Tim-3[J]. Int J Biochem Cell Biol, 2019, 110: 1-8. DOI: 10.1016/j.biocel.2019.01.019.
|
[25] |
WANG YK, YANG L, DONG XC, et al. Overexpression of NNT-AS1 activates TGF- β signaling to decrease tumor CD4 lymphocyte infiltration in hepatocellular carcinoma[J]. Biomed Res Int, 2020, 2020: 8216541. DOI: 10.1155/2020/8216541.
|
[26] |
WAN S, ZHAO E, KRYCZEK I, et al. Tumor-associated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells[J]. Gastroenterology, 2014, 147(6): 1393-1404. DOI: 10.1053/j.gastro.2014.08.039.
|
[27] |
BAIG MS, ROY A, RAJPOOT S, et al. Tumor-derived exosomes in the regulation of macrophage polarization[J]. Inflamm Res, 2020, 69(5): 435-451. DOI: 10.1007/s00011-020-01318-0.
|
[28] |
LUO HL, LUO T, LIU JJ, et al. Macrophage polarization-associated lnc-Ma301 interacts with caprin-1 to inhibit hepatocellular carcinoma metastasis through the Akt/Erk1 pathway[J]. Cancer Cell Int, 2021, 21(1): 422. DOI: 10.1186/s12935-021-02133-1.
|
[29] |
TIAN XH, WU YY, YANG YT, et al. Long noncoding RNA LINC00662 promotes M2 macrophage polarization and hepatocellular carcinoma progression via activating Wnt/β-catenin signaling[J]. Mol Oncol, 2020, 14(2): 462-483. DOI: 10.1002/1878-0261.12606.
|
[30] |
YE YB, XU Y, LAI Y, et al. Long non-coding RNA cox-2 prevents immune evasion and metastasis of hepatocellular carcinoma by altering M1/M2 macrophage polarization[J]. J Cell Biochem, 2018, 119(3): 2951-2963. DOI: 10.1002/jcb.26509.
|
[31] |
SASAKI R, KANDA T, YOKOSUKA O, et al. Exosomes and hepatocellular carcinoma: From bench to bedside[J]. Int J Mol Sci, 2019, 20(6): 1406. DOI: 10.3390/ijms20061406.
|
[32] |
QI F, DU XJ, ZHAO ZY, et al. Tumor mutation burden-associated LINC00638/miR-4732-3p/ULBP1 axis promotes immune escape via PD-L1 in hepatocellular carcinoma[J]. Front Oncol, 2021, 11: 729340. DOI: 10.3389/fonc.2021.729340.
|
[33] |
ZHANG L, HU SS, CHEN JS, et al. Comprehensive analysis of the MIR4435-2HG/miR-1-3p/MMP9/miR-29-3p/DUXAP8 ceRNA network axis in hepatocellular carcinoma[J]. Discov Oncol, 2021, 12(1): 38. DOI: 10.1007/s12672-021-00436-3.
|
[34] |
FANG PP, XIANG LX, CHEN WL, et al. LncRNA GAS5 enhanced the killing effect of NK cell on liver cancer through regulating miR-544/RUNX3[J]. Innate Immun, 2019, 25(2): 99-109. DOI: 10.1177/1753425919827632.
|
[35] |
CHEN W, QUAN Y, FAN S, et al. Exosome-transmitted circular RNA hsa_circ_0051443 suppresses hepatocellular carcinoma progression[J]. Cancer Lett, 2020, 475: 119-128. DOI: 10.1016/j.canlet.2020.01.022.
|
[36] |
WANG XX, SHENG W, XU T, et al. CircRNA hsa_circ_0110102 inhibited macrophage activation and hepatocellular carcinoma progression via miR-580-5p/PPARα/CCL2 pathway[J]. Aging, 2021, 13(8): 11969-11987. DOI: 10.18632/aging.202900.
|
[37] |
ZHANG PF, GAO C, HUANG XY, et al. Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma[J]. Mol Cancer, 2020, 19(1): 110. DOI: 10.1186/s12943-020-01222-5.
|
[38] |
WANG Y, GAO RF, LI JP, et al. Downregulation of hsa_circ_0074854 suppresses the migration and invasion in hepatocellular carcinoma via interacting with HuR and via suppressing exosomes-mediated macrophage M2 polarization[J]. Int J Nanomedicine, 2021, 16: 2803-2818. DOI: 10.2147/IJN.S284560.
|
[39] |
TANG X, REN H, GUO M, et al. Review on circular RNAs and new insights into their roles in cancer[J]. Comput Struct Biotechnol J, 2021, 19: 910-928. DOI: 10.1016/j.csbj.2021.01.018.
|
[40] |
SHI Y, LIU JB, DENG J, et al. The role of ceRNA-mediated diagnosis and therapy in hepatocellular carcinoma[J]. Hereditas, 2021, 158(1): 44. DOI: 10.1186/s41065-021-00208-7.
|
[41] |
CHEN WL, XU XM. New progress in the study of markers for the early diagnosis of liver cancer[J]. China Med Herald, 2023, 20(1): 40-44. DOI: 10.20047/j.issn1673-7210.2023.01.08.
陈文亮, 徐细明. 肝癌早期诊断标志物的研究新进展[J]. 中国医药导报, 2023, 20(1): 40-44. DOI: 10.20047/j.issn1673-7210.2023.01.08.
|
[42] |
HUANG FX, LI HY, LI ZK, et al. Regulation of thymosinα1 resistance to hepatocellular carcinoma by long chain non-coding RNA LINC0110[J]. Chin J Immunol, 2022, 38(10): 1207-1211. DOI: 10.3969/j.issn.1000-484X.2022.10.010.5
黄凤霞, 李海燕, 李正堃, 等. 长链非编码RNA LINC01105调控肝癌对胸腺素α1耐药[J]. 中国免疫学杂志, 2022, 38(10): 1207-1211. DOI: 10.3969/j.issn.1000-484X.2022.10.010.5
|
[43] |
SUN QY, LI J, JIN BX, et al. Evaluation of miR-331-3p and miR-23b-3p as serum biomarkers for hepatitis C virus-related hepatocellular carcinoma at early stage[J]. Clin Res Hepatol Gastroenterol, 2020, 44(1): 21-28. DOI: 10.1016/j.clinre.2019.03.011.
|
[44] |
HUANG WJ, TIAN XP, BI SX, et al. The β-catenin/TCF-4-LINC01278-miR-1258-Smad2/3 axis promotes hepatocellular carcinoma metastasis[J]. Oncogene, 2020, 39(23): 4538-4550. DOI: 10.1038/s41388-020-1307-3.
|