[1] |
SUNG H, FERLAY J, SIEGEL RL, et al. Global cancer statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
|
[2] |
WEI J, GUO Y, WANG Y, et al. Clinical development of CAR T cell therapy in China: 2020 update[J]. Cell Mol Immunol, 2021, 18(4): 792-804. DOI: 10.1038/s41423-020-00555-x.
|
[3] |
SHI D, SHI Y, KASEB AO, et al. Chimeric antigen receptor-glypican-3 T-cell therapy for advanced hepatocellular carcinoma: results of phase i trials[J]. Clin Cancer Res, 2020, 26(15): 3979-3989. DOI: 10.1158/1078-0432.CCR-19-3259.
|
[4] |
DEPIL S, DUCHATEAU P, GRUPP SA, et al. 'Off-the-shelf' allogeneic CAR T cells: development and challenges[J]. Nat Rev Drug Discov, 2020, 19(3): 185-199. DOI: 10.1038/s41573-019-0051-2.
|
[5] |
GUO J, TANG Q. Recent updates on chimeric antigen receptor T cell therapy for hepatocellular carcinoma[J]. Cancer Gene Ther, 2021, 28(10-11): 1075-1087. DOI: 10.1038/s41417-020-00259-4.
|
[6] |
ZHANG C, LIU J, ZHONG JF, et al. Engineering CAR-T cells[J]. Biomark Res, 2017, 5: 22. DOI: 10.1186/s40364-017-0102-y.
|
[7] |
AMINI L, SILBERT SK, MAUDE SL, et al. Preparing for CAR T cell therapy: patient selection, bridging therapies and lymphodepletion[J]. Nat Rev Clin Oncol, 2022, 19(5): 342-355. DOI: 10.1038/s41571-022-00607-3.
|
[8] |
ZHENG N, FANG J, XUE G, et al. Induction of tumor cell autosis by myxoma virus-infected CAR-T and TCR-T cells to overcome primary and acquired resistance[J]. Cancer Cell, 2022, 40(9): 973-985. e7. DOI: 10.1016/j.ccell.2022.08.001.
|
[9] |
DIMITRI A, HERBST F, FRAIETTA JA. Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing[J]. Mol Cancer, 2022, 21(1): 78. DOI: 10.1186/s12943-022-01559-z.
|
[10] |
GAO TA, CHEN YY. Engineering next-generation CAR-T cells: overcoming tumor hypoxia and metabolism[J]. Annu Rev Chem Biomol Eng, 2022, 13: 193-216. DOI: 10.1146/annurev-chembioeng-092120-092914.
|
[11] |
YOUNG RM, ENGEL NW, USLU U, et al. Next-generation CAR T- cell therapies[J]. Cancer Discov, 2022, 12(7): 1625-1633. DOI: 10.1158/2159-8290.CD-21-1683.
|
[12] |
GOODMAN DB, AZIMI CS, KEARNS K, et al. Pooled screening of CAR T cells identifies diverse immune signaling domains for next-generation immunotherapies[J]. Sci Transl Med, 2022, 14(670): eabm1463. DOI: 10.1126/scitranslmed.abm1463.
|
[13] |
MEHRABADI AZ, RANJBAR R, FARZANEHPOUR M, et al. Therapeutic potential of CAR T cell in malignancies: A scoping review[J]. Biomed Pharmacother, 2022, 146: 112512. DOI: 10.1016/j.biopha.2021.112512.
|
[14] |
ZMIEVSKAYA E, VALIULLINA A, GANEEVA I, et al. Application of CAR-T cell therapy beyond Oncology: Autoimmune diseases and viral infections[J]. Biomedicines, 2021, 9(1): 59. DOI: 10.3390/biomedicines9010059.
|
[15] |
RADIC M, NEELI I, MARION T. Prospects for CAR T cell immunotherapy in autoimmune diseases: clues from Lupus[J]. Expert Opin Biol Ther, 2022, 22(4): 499-507. DOI: 10.1080/14712598.2022.2026921.
|
[16] |
ALEXANDER T, GRECO R. Hematopoietic stem cell transplantation and cellular therapies for autoimmune diseases: overview and future considerations from the Autoimmune Diseases Working Party (ADWP) of the European Society for Blood and Marrow Transplantation (EBMT)[J]. Bone Marrow Transplant, 2022, 57(7): 1055-1062. DOI: 10.1038/s41409-022-01702-w.
|
[17] |
MAKKOUK A, YANG XC, BARCA T, et al. Off-the-shelf Vδ1 gamma delta T cells engineered with glypican-3 (GPC-3)-specific chimeric antigen receptor (CAR) and soluble IL-15 display robust antitumor efficacy against hepatocellular carcinoma[J]. J Immunother Cancer, 2021, 9(12): e003441. DOI: 10.1136/jitc-2021-003441.
|
[18] |
KOLLURI A, LI D, LI N, et al. Engineered, fully human nanobody-based CAR T cells have enhanced antitumor activity against hepatocellular carcinoma in preclinical models[Z]. American Society of Clinical Oncology, 2022
|
[19] |
ASPURIA PJ, SEMANA M, VIVONA S, et al. Engineered human IL-2/IL-2Rb orthogonal pairs selectively enhance anti-GPC3 CAR T cells to drive complete responses in solid epithelial tumor models[J]. Cancer Res, 2022, 82(12_Supplement): 2824.
|
[20] |
RODDY H, MEYER T, RODDIE C. Novel cellular therapies for hepatocellular carcinoma[J]. Cancers (Basel), 2022, 14(3): 504. DOI: 10.3390/cancers14030504.
|
[21] |
SUN H, XING C, JIANG S, et al. Long term complete response of advanced hepatocellular carcinoma to glypican-3 specific chimeric antigen receptor T-Cells plus sorafenib, a case report[J]. Front Immunol, 2022, 13: 963031. DOI: 10.3389/fimmu.2022.963031.
|
[22] |
STEFFIN D HM, BATRA SA, RATHI P, et al. A phase I clinical trial using armored GPC3 CAR T cells for children with relapsed/refractory liver tumors[Z]. American Society of Clinical Oncology, 2019
|
[23] |
CAO G, ZHANG G, LIU M, et al. GPC3-targeted CAR-T cells secreting B7H3-targeted BiTE exhibit potent cytotoxicity activity against hepatocellular carcinoma cell in the in vitro assay[J]. Biochem Biophys Rep, 2022, 31: 101324. DOI: 10.1016/j.bbrep.2022.101324.
|
[24] |
FANG W, FU Q, ZHAO Q, et al. Phase I trial of fourth-generation chimeric antigen receptor T-cells targeting glypican-3 for advanced hepatocellular carcinoma[Z]. Wolters Kluwer Health, 2021
|
[25] |
POOREBRAHIM M, QUIROS-FERNANDEZ I, FAKHR E, et al. Generation of CAR-T cells using lentiviral vectors[M]. Methods in cell biology, Elsevier, 2022: 39-69.
|
[26] |
GILLESPIE JR, UVERSKY VN. Structure and function of alpha-fetoprotein: a biophysical overview[J]. Biochim Biophys Acta, 2000, 1480(1-2): 41-56. DOI: 10.1016/s0167-4838(00)00104-7.
|
[27] |
GOLUBOVSKAYA V. CAR-T Cells targeting immune checkpoint pathway players[J]. Front Biosci (Landmark Ed), 2022, 27(4): 121. DOI: 10.31083/j.fbl2704121.
|
[28] |
WANG W, SHA JP, DING F, et al. Targeting AFP-MHC complex with CAR T cell therapy for liver cancer[J]. Chin Hepatol, 2022, 27(11): 1175-1179. DOI: 10.3969/j.issn.1008-1704.2022.11.008.
王玮, 沙钧平, 丁锋, 等. 以甲胎蛋白-MHC复合物为靶向的CAR T细胞治疗肝癌的效果评估[J]. 肝脏, 2022, 27(11): 1175-1179. DOI: 10.3969/j.issn.1008-1704.2022.11.008.
|
[29] |
SAGNELLA SM, WHITE AL, YEO D, et al. Locoregional delivery of CAR-T cells in the clinic[J]. Pharmacol Res, 2022, 182: 106329. DOI: 10.1016/j.phrs.2022.106329.
|
[30] |
GALLE PR, FOERSTER F, KUDO M, et al. Biology and significance of alpha-fetoprotein in hepatocellular carcinoma[J]. Liver Int, 2019, 39(12): 2214-2229. DOI: 10.1111/liv.14223.
|
[31] |
MAO L, SU S, LI J, et al. Development of engineered CAR T Cells targeting tumor-associated glycoforms of MUC1 for the treatment of intrahepatic cholangiocarcinoma[J]. J Immunother, 2023, 46(3): 89-95. DOI: 10.1097/CJI.0000000000000460.
|
[32] |
ZHOU R, YAZDANIFAR M, ROY LD, et al. CAR T cells targeting the tumor MUC1 glycoprotein reduce triple-negative breast cancer growth[J]. Front Immunol, 2019, 10: 1149. DOI: 10.3389/fimmu.2019.01149.
|
[33] |
CHEN L, CHEN F, LI J, et al. CAR-T cell therapy for lung cancer: Potential and perspective[J]. Thorac Cancer, 2022, 13(7): 889-899. DOI: 10.1111/1759-7714.14375.
|
[34] |
LI KX, WU HY, PAN WY, et al. Correction: A novel approach for relapsed/refractory FLT3mut+acute myeloid leukaemia: synergistic effect of the combination of bispecific FLT3scFv/NKG2D-CAR T cells and gilteritinib[J]. Mol Cancer, 2022, 21(1): 134. DOI: 10.1186/s12943-022-01566-0.
|
[35] |
TAY J, WANG J, DU Z, et al. Manufacturing NKG2D CAR-T cells with piggyBac transposon vectors and K562 artificial antigen-presenting cells[J]. Mol Ther Methods Clin Dev, 2021, 21: 107-120. DOI: 10.1016/j.omtm.2021.02.023.
|
[36] |
SUN B, YANG D, DAI H, et al. Eradication of hepatocellular carcinoma by NKG2D-based CAR-T cells[J]. Cancer Immunol Res, 2019, 7(11): 1813-1823. DOI: 10.1158/2326-6066.CIR-19-0026.
|
[37] |
XU Y, LI P, LIU Y, et al. Epi-immunotherapy for cancers: rationales of epi-drugs in combination with immunotherapy and advances in clinical trials[J]. Cancer Commun (Lond), 2022, 42(6): 493-516. DOI: 10.1002/cac2.12313.
|
[38] |
SALLMAN DA, KERRE T, HAVELANGE V, et al. CYAD-01, an autologous NKG2D-based CAR T-cell therapy, in relapsed or refractory acute myeloid leukaemia and myelodysplastic syndromes or multiple myeloma (THINK): haematological cohorts of the dose escalation segment of a phase 1 trial[J]. Lancet Haematol, 2023, 10(3): e191-e202. DOI: 10.1016/S2352-3026(22)00378-7.
|
[39] |
ZHANG RY, WEI D, LIU ZK, et al. Doxycycline inducible chimeric antigen receptor t cells targeting CD147 for hepatocellular carcinoma therapy[J]. Front Cell Dev Biol, 2019, 7: 233. DOI: 10.3389/fcell.2019.00233.
|
[40] |
SAKAMOTO M, MIYAGAKI T, KAMIJO H, et al. CD147-cyclophilin a interactions promote proliferation and survival of cutaneous T-cell lymphoma[J]. Int J Mol Sci, 2021, 22(15): 7889. DOI: 10.3390/ijms22157889.
|
[41] |
ALSALLOUM A, SHEVCHENKO JA, SENNIKOV S. The Melanoma-Associated Antigen Family A (MAGE-A): A promising target for cancer immunotherapy?[J]. Cancers (Basel), 2023, 15(6): 1779. DOI: 10.3390/cancers15061779.
|
[42] |
LIU X, XU Y, XIONG W, et al. Development of a TCR-like antibody and chimeric antigen receptor against NY-ESO-1/HLA-A2 for cancer immunotherapy[J]. J Immunother Cancer, 2022, 10(3): e004035. DOI: 10.1136/jitc-2021-004035.
|
[43] |
GILL CM, BRASTIANOS PK. Emerging meningioma therapies ii: immunotherapies, novel radiotherapy techniques, and other experimental approaches[J]. Meningiomas: Comprehensive Strategies for Management, 2020: 227-238. DOI: 10.1007/978-3-030-59558-6_15.
|
[44] |
MCGRATH K, DOTTI G. Combining oncolytic viruses with chimeric antigen receptor T Cell therapy[J]. Hum Gene Ther, 2021, 32(3-4): 150-157. DOI: 10.1089/hum.2020.278.
|
[45] |
LUZZI S, GIOTTA LUCIFERO A, BRAMBILLA I, et al. Adoptive immunotherapies in neuro-oncology: classification, recent advances, and translational challenges[J]. Acta Biomed, 2020, 91(7-S): 18-31. DOI: 10.23750/abm.v91i7-S.9952.
|
[46] |
LI D, QIN J, ZHOU T, et al. Bispecific GPC3/PD-1 CAR-T cells for the treatment of HCC[J]. Int J Oncol, 2023, 62(4): 1-11. DOI: 10.3892/ijo.2023.5501.
|
[47] |
JIANG Y, WEN WH, YANG F, et al. Research progress of multi-target CAR-T cell therapy for cancer[J]. Cancer Res Prevent Treat, 2022, 49(7): 709-714. DOI: 10.3971/j.issn.1000-8578.2022.21.1224.
蒋遥, 温伟红, 杨发, 等. 多靶点CAR-T细胞治疗肿瘤的研究进展[J]. 肿瘤防治研究, 2022, 49(7): 709-714. DOI: 10.3971/j.issn.1000-8578.2022.21.1224.
|
[48] |
JONSSON VD, NG RH, DULLERUD N, et al. CAR T cell therapy drives endogenous locoregional T cell dynamics in a responding patient with glioblastoma[J]. bioRxiv, 2021: 2021.2009.2022.460392: DOI:
|
[49] |
KIROUAC DC, ZMURCHOK C, DEYATI A, et al. Deconvolution of clinical variance in CAR-T cell pharmacology and response[J]. Nat Biotechnol, 2023. DOI: 10.1038/s41587-023-01687-x. [Online ahead of print]
|
[50] |
REJESKI K, WU Z, BLUMENBERG V, et al. Oligoclonal T-cell expansion in a patient with bone marrow failure after CD19 CAR-T therapy for Richter-transformed DLBCL[J]. Blood, 2022, 140(20): 2175-2179. DOI: 10.1182/blood.2022017015.
|
[51] |
POOREBRAHIM M, MELIEF J, PICO DE COAÑA Y, et al. Counteracting CAR T cell dysfunction[J]. Oncogene, 2021, 40(2): 421-435. DOI: 10.1038/s41388-020-01501-x.
|
[52] |
YEKU OO, PURDON T, SPRIGGS DR, et al. Chimeric antigen receptor (CAR) T cells genetically engineered to deliver IL-12 to the tumor microenvironment in ovarian cancer[Z]. American Society of Clinical Oncology, 2017.
|
[53] |
DAL BO M, de MATTIA E, BABOCI L, et al. New insights into the pharmacological, immunological, and CAR-T-cell approaches in the treatment of hepatocellular carcinoma[J]. Drug Resist Updat, 2020, 51: 100702. DOI: 10.1016/j.drup.2020.100702.
|