中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 39 Issue 6
Jun.  2023
Turn off MathJax
Article Contents

Research advances in natural killer cell-based immunotherapy in liver cancer

DOI: 10.3969/j.issn.1001-5256.2023.06.034
Research funding:

National Natural Science Foundation of China (82003063);

Research Project of Degree and Postgraduate Education Reform of Wuhan University (1605-413200097)

More Information
  • Corresponding author: YU Jia, hbpennhmp116@163.com (ORCID: 0000-0002-2503-0025)
  • Received Date: 2022-09-18
  • Accepted Date: 2022-11-10
  • Published Date: 2023-06-20
  • Natural killer (NK) cells are important immune cells in the human body and are also the main lymphocytes in the liver. They are considered the first defense mechanism against tumor and have a significant impact on the development and progression of liver cancer. The characteristics of NK cells help them become a new choice for immunotherapy, and NK cell-based immunotherapy may succeed in the treatment of liver cancer. This article reviews the biological characteristics of NK cells, their role in the development and progression of liver cancer, and the research advances in related treatment.

     

  • loading
  • [1]
    SUNG H, FERLAY J, SIEGEL RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
    [2]
    SAJID M, LIU L, SUN C. The dynamic role of NK cells in liver cancers: role in HCC and HBV associated HCC and its therapeutic implications[J]. Front Immunol, 2022, 13: 887186. DOI: 10.3389/fimmu.2022.887186.
    [3]
    LI J, TAO L, WANG X. Cytotoxic immune cell-based immunotherapy for hepatocellular carcinoma[J]. Hepatoma Research, 2020, 6: 15. DOI: 10.20517/2394-5079.2019.34.
    [4]
    MARQUARDT N, BÉZIAT V, NYSTRÖM S, et al. Cutting edge: identification and characterization of human intrahepatic CD49a+ NK cells[J]. J Immunol, 2015, 194(6): 2467-2471. DOI: 10.4049/jimmunol.1402756.
    [5]
    MICHEL T, OLLERT M, ZIMMER J. A hot topic: Cancer immunotherapy and natural killer cells[J]. Int J Mol Sci, 2022, 23(2): 797. DOI: 10.3390/ijms23020797.
    [6]
    KALATHIL SG, THANAVALA Y. Natural killer cells and T cells in hepatocellular carcinoma and viral hepatitis: Current status and perspectives for future immunotherapeutic approaches[J]. Cells, 2021, 10(6). DOI: 10.3390/cells10061332.
    [7]
    LIU P, CHEN L, ZHANG H. Natural killer cells in liver disease and hepatocellular carcinoma and the NK cell-based immunotherapy[J]. J Immunol Res, 2018, 2018: 1206737. DOI: 10.1155/2018/1206737.
    [8]
    POZNANSKI SM, SINGH K, RITCHIE TM, et al. Metabolic flexibility determines human NK cell functional fate in the tumor microenvironment[J]. Cell Metab, 2021, 33(6): 1205-1220. e5. DOI: 10.1016/j.cmet.2021.03.023.
    [9]
    OURA K, MORISHITA A, TANI J, et al. Tumor immune microenvironment and immunosuppressive therapy in hepatocellular carcinoma: a review[J]. Int J Mol Sci, 2021, 22(11): 5801. DOI: 10.3390/ijms22115801.
    [10]
    MIKULAK J, BRUNI E, ORIOLO F, et al. Hepatic natural killer cells: Organ-specific sentinels of liver immune homeostasis and physiopathology[J]. Front Immunol, 2019, 10: 946. DOI: 10.3389/fimmu.2019.00946.
    [11]
    PESCE S, GREPPI M, TABELLINI G, et al. Identification of a subset of human natural killer cells expressing high levels of programmed death 1: A phenotypic and functional characterization[J]. J Allergy Clin Immunol, 2017, 139(1): 335-346. e3. DOI: 10.1016/j.jaci.2016.04.025.
    [12]
    WONG J, KWOK G, TANG V, et al. Ipilimumab and nivolumab/pembrolizumab in advanced hepatocellular carcinoma refractory to prior immune checkpoint inhibitors[J]. J Immunother Cancer, 2021, 9(2): e001945. DOI: 10.1136/jitc-2020-001945.
    [13]
    LIN M, LUO H, LIANG S, et al. Pembrolizumab plus allogeneic NK cells in advanced non-small cell lung cancer patients[J]. J Clin Invest, 2020, 130(5): 2560-2569. DOI: 10.1172/JCI132712.
    [14]
    BARRUETO L, CAMINERO F, CASH L, et al. Resistance to checkpoint inhibition in cancer immunotherapy[J]. Transl Oncol, 2020, 13(3): 100738. DOI: 10.1016/j.tranon.2019.12.010.
    [15]
    TAN S, XU Y, WANG Z, et al. Tim-3 hampers tumor surveillance of liver-resident and conventional NK cells by disrupting PI3K signaling[J]. Cancer Res, 2020, 80(5): 1130-1142. DOI: 10.1158/0008-5472.CAN-19-2332.
    [16]
    DEUSS FA, WATSON GM, FU Z, et al. Structural basis for CD96 immune receptor recognition of nectin-like protein-5, CD155[J]. Structure, 2019, 27(2): 219-228. e3. DOI: 10.1016/j.str.2018.10.023.
    [17]
    STAMM H, OLIVEIRA-FERRER L, GROSSJOHANN EM, et al. Targeting the TIGIT-PVR immune checkpoint axis as novel therapeutic option in breast cancer[J]. Oncoimmunology, 2019, 8(12): e1674605. DOI: 10.1080/2162402X.2019.1674605.
    [18]
    SUN H, HUANG Q, HUANG M, et al. Human CD96 correlates to natural killer cell exhaustion and predicts the prognosis of human hepatocellular carcinoma[J]. Hepatology, 2019, 70(1): 168-183. DOI: 10.1002/hep.30347.
    [19]
    AHN M, NIU J, KIM D, et al. Vibostolimab, an anti-TIGIT antibody, as monotherapy and in combination with pembrolizumab in anti-PD-1/PD-L1-refractory NSCLC[J]. Ann Oncol, 2020, 31: S887. DOI: 10.1016/j.annonc.2020.08.1714.
    [20]
    BLAKE SJ, DOUGALL WC, MILES JJ, et al. Molecular pathways: Targeting CD96 and TIGIT for cancer immunotherapy[J]. Clin Cancer Res, 2016, 22(21): 5183-5188. DOI: 10.1158/1078-0432.CCR-16-0933.
    [21]
    BUCKLE I, GUILLEREY C. Inhibitory receptors and immune checkpoints regulating natural killer cell responses to cancer[J]. Cancers (Basel), 2021, 13(17): 4263. DOI: 10.3390/cancers13174263.
    [22]
    KOHRT HE, THIELENS A, MARABELLE A, et al. Anti-KIR antibody enhancement of anti-lymphoma activity of natural killer cells as monotherapy and in combination with anti-CD20 antibodies[J]. Blood, 2014, 123(5): 678-686. DOI: 10.1182/blood-2013-08-519199.
    [23]
    ZHANG J, BASHER F, WU JD. NKG2D ligands in tumor immunity: two sides of a coin[J]. Front Immunol, 2015, 6: 97. DOI: 10.3389/fimmu.2015.00097.
    [24]
    OLIVIERO B, VARCHETTA S, MELE D, et al. MICA/B-targeted antibody promotes NK cell-driven tumor immunity in patients with intrahepatic cholangiocarcinoma[J]. Oncoimmunology, 2022, 11(1): 2035919. DOI: 10.1080/2162402X.2022.2035919.
    [25]
    FERRARI DE ANDRADE L, TAY RE, PAN D, et al. Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity[J]. Science, 2018, 359(6383): 1537-1542. DOI: 10.1126/science.aao0505.
    [26]
    FELICES M, LENVIK TR, DAVIS ZB, et al. Generation of biKEs and triKEs to improve NK cell-Mediated targeting of tumor cells[J]. Methods Mol Biol, 2016, 1441: 333-346. DOI: 10.1007/978-1-4939-3684-7_28.
    [27]
    van FAASSEN H, JO D, RYAN S, et al. Incorporation of a novel CD16-specific single-domain antibody into multispecific natural killer cell engagers with potent ADCC[J]. Mol Pharmaceut, 2021, 18(6): 2375-2384. DOI: 10.1021/acs.molpharmaceut.1c00208.
    [28]
    ABEL AM, YANG C, THAKAR MS, et al. Natural killer cells: development, maturation, and clinical utilization[J]. Front Immunol, 2018, 9: 1869. DOI: 10.3389/fimmu.2018.01869.
    [29]
    MADDINENI S, SILBERSTEIN JL, SUNWOO JB. Emerging NK cell therapies for cancer and the promise of next generation engineering of iPSC-derived NK cells[J]. J Immunother Cancer, 2022, 10(9): e004693. DOI: 10.1136/jitc-2022-004693.
    [30]
    KLINGEMANN H, BOISSEL L, TONEGUZZO F. Natural killer cells for immunotherapy-advantages of the NK-92 cell line over blood NK cells[J]. Front Immunol, 2016, 7: 91. DOI: 10.3389/fimmu.2016.00091.
    [31]
    BERGMAN H, LINDQVIST C. Human IL-15 inhibits NK cells specific for human NK-92 cells[J]. Anticancer Res, 2021, 41(7): 3281-3285. DOI: 10.21873/anticanres.15114.
    [32]
    DAI K, WU Y, SHE S, et al. Advancement of chimeric antigen receptor-natural killer cells targeting hepatocellular carcinoma[J]. World J Gastrointest Oncol, 2021, 13(12): 2029-2037. DOI: 10.4251/wjgo.v13.i12.2029.
    [33]
    DAHER M, MELO GARCIA L, LI Y, et al. CAR-NK cells: the next wave of cellular therapy for cancer[J]. Clin Transl Immunology, 2021, 10(4): e1274. DOI: 10.1002/cti2.1274.
    [34]
    YU M, LUO H, FAN M, et al. Development of GPC3-specific chimeric antigen receptor-engineered natural killer cells for the treatment of hepatocellular carcinoma[J]. Mol Ther, 2018, 26(2): 366-378. DOI: 10.1016/j.ymthe.2017.12.012.
    [35]
    ZHAO J, LIN L, LUO Y, et al. Optimization of GPC3-specific chimeric antigen receptor structure and its effect on killing hepatocellular carcinoma cells[J]. Bioengineered, 2021, 12(1): 3674-3683. DOI: 10.1080/21655979.2021.1950261.
    [36]
    TSENG HC, XIONG W, BADETI S, et al. Efficacy of anti-CD147 chimeric antigen receptors targeting hepatocellular carcinoma[J]. Nat Commun, 2020, 11(1): 4810. DOI: 10.1038/s41467-020-18444-2.
    [37]
    ZHU H, BLUM RH, BERNAREGGI D, et al. Metabolic reprograming via deletion of CISH in Human iPSC-Derived NK cells promotes in vivo persistence and enhances anti-tumor activity[J]. Cell Stem Cell, 2020, 27(2): 224-237. e6. DOI: 10.1016/j.stem.2020.05.008.
    [38]
    NAEIMI KARAROUDI M, NAGAI Y, ELMAS E, et al. CD38 deletion of human primary NK cells eliminates daratumumab-induced fratricide and boosts their effector activity[J]. Blood, 2020, 136(21): 2416-2427. DOI: 10.1182/blood.2020006200.
    [39]
    ALLAN D, CHAKRABORTY M, WALLER GC, et al. Systematic improvements in lentiviral transduction of primary human natural killer cells undergoing ex vivo expansion[J]. Mol Ther Methods Clin Dev, 2021, 20: 559-571. DOI: 10.1016/j.omtm.2021.01.008.
    [40]
    FERNANDEZ JP, LUDDY KA, HARMON C, et al. Hepatic tumor microenvironments and effects on NK cell phenotype and function[J]. Int J Mol Sci, 2019, 20(17): 4131. DOI: 10.3390/ijms20174131.
    [41]
    ZHUANG L, FULTON RJ, RETTMAN P, et al. Activity of IL-12/15/18 primed natural killer cells against hepatocellular carcinoma[J]. Hepatol Int, 2019, 13(1): 75-83. DOI: 10.1007/s12072-018-9909-3.
    [42]
    ZHENG X, QIAN Y, FU B, et al. Mitochondrial fragmentation limits NK cell-based tumor immunosurveillance[J]. Nat Immunol, 2019, 20(12): 1656-1667. DOI: 10.1038/s41590-019-0511-1.
    [43]
    YANG Y, LUNDQVIST A. Immunomodulatory effects of IL-2 and IL-15; Implications for cancer immunotherapy[J]. Cancers (Basel), 2020, 12(12): 3586. DOI: 10.3390/cancers12123586.
    [44]
    MASKALENKO NA, ZHIGAREV D, CAMPBELL KS. Harnessing natural killer cells for cancer immunotherapy: dispatching the first responders[J]. Nat Rev Drug Discov, 2022, 21(8): 559-577. DOI: 10.1038/s41573-022-00413-7.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (549) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return