中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 39 Issue 12
Dec.  2023
Turn off MathJax
Article Contents

Application of Mengchao Liver Disease-Brain System version 2.0 in artificial intelligence-assisted clinical diagnosis and treatment: A preliminary study

DOI: 10.3969/j.issn.1001-5256.2023.12.022
Research funding:

Science and Technology Innovation Platform Project of Fuzhou Science and Technology Bureau (2021-P-055)

More Information
  • Corresponding author: LIU Jingfeng, drjingfeng@126.com (ORCID: 0000-0003-3499-5678)
  • Received Date: 2023-03-12
  • Accepted Date: 2023-04-21
  • Published Date: 2023-12-12
  •   Objective  To investigate the application of Mengchao Liver Disease-Brain System version 2.0 in clinical diagnosis and treatment.  Methods  This study was conducted among 160 patients who were admitted to the internal medicine and surgical departments from June 9 to 21, 2021, and their data were automatically captured by the intelligent information system of Southeast Big Data Institute of Hepatobiliary Health, Mengchao Hepatobiliary Hospital of Fujian Medical University. The completeness and accuracy of Mengchao Liver Disease-Brain System version 2.0 were evaluated based on the intelligent diagnostic tools such as auxiliary diagnosis of chronic hepatitis B, interpretation of liver fibrosis, staging model of chronic hepatitis B, auxiliary diagnosis of liver cirrhosis, auxiliary staining of liver cirrhosis, auxiliary diagnosis of primary liver cancer, BCLC stage of primary liver cancer, Chinese staging of primary liver cancer, Child-Pugh score, and APRI score.  Results  All auxiliary diagnostic tools had a complete rate of 94.17% in terms of the extraction of correct key dimensions within the test period. The artificial intelligence report had a structured accuracy of 97.55% in capturing data and an accuracy rate of 91.61% in text processing.  Conclusion  Mengchao Liver Disease-Brain System version 2.0 provides an innovative mode for the construction of big data platform in medical specialties and has a high accuracy as an auxiliary diagnostic tool in clinical diagnosis and treatment.

     

  • loading
  • [1]
    China Academy of Information and Communications Technology. Blue paper of AI medical industry development by 2020[EB/OL].( 2020-09-17)[ 2023-04-20]. http://www.caict.ac.cn/kxyj/qwfb/ztbg/202009/t20200908_323708.htm. http://www.caict.ac.cn/kxyj/qwfb/ztbg/202009/t20200908_323708.htm

    中国信息通信研究院. 2020人工智能医疗产业发展蓝皮书[EB/OL].( 2020-09-17)[ 2023-04-20]. http://www.caict.ac.cn/kxyj/qwfb/ztbg/202009/t20200908_323708.htm. http://www.caict.ac.cn/kxyj/qwfb/ztbg/202009/t20200908_323708.htm
    [2]
    General Office of the State Council. About Suggestions to Promote the Development“Internet and Medical Health”[EB/OL].( 2018-04-28)[ 2023-04-20]. https://www.gov.cn/zhengce/content/2018-04/28/content_5286645.htm. https://www.gov.cn/zhengce/content/2018-04/28/content_5286645.htm

    国务院办公厅. 关于促进“互联网和医疗健康”发展的意见[EB/OL].( 2018-04-28)[ 2023-04-20]. https://www.gov.cn/zhengce/content/2018-04/28/content_5286645.htm. https://www.gov.cn/zhengce/content/2018-04/28/content_5286645.htm
    [3]
    White paper medical imaging AI in China[EB/OL].( 2019-01-09)[ 2023-04-20]. https://ai.sjtu.edu.cn/info/news/90. https://ai.sjtu.edu.cn/info/news/90

    中国人工智能医疗白皮书[EB/OL].( 2019-01-09)[ 2023-04-20]. https://ai.sjtu.edu.cn/info/news/90. https://ai.sjtu.edu.cn/info/news/90
    [4]
    LIU HZ, LIN HT, LIN ZW, et al. Application value of machine learning algorithms for preoperative prediction of microvascular invasion in hepatocellular carcinoma[J]. Chin J Dig Surg, 2020, 19( 2): 156- 165. DOI: 10.3760/cma.j.issn.1673-9752.2020.02.008.

    刘红枝, 林海涛, 林昭旺, 等. 机器学习算法在肝细胞癌微血管侵犯术前预测中的应用价值[J]. 中华消化外科杂志, 2020, 19( 2): 156- 165. DOI: 10.3760/cma.j.issn.1673-9752.2020.02.008.
    [5]
    LIN X, GUO JJ, WANG Q, et al. Construction status of domestic and foreign medical terminology sharing service platforms and discussion on the construction of platform[J]. China Digit Med, 2019, 14( 11): 103- 106. DOI: 10.3969/j.issn.1673-7571.2019.11.032.

    林鑫, 郭进京, 王茜, 等. 国内外医学术语共享服务平台建设现状及平台构建探讨[J]. 中国数字医学, 2019, 14( 11): 103- 106. DOI: 10.3969/j.issn.1673-7571.2019.11.032.
    [7]
    WANG L, GUO PF, YANG Y, et al. Preliminary exploration of primary liver cancer big data[J]. Chin J Hepatobiliary Surg, 2019, 25( 9): 695- 698. DOI: 10.3760/cma.j.issn.1007-8118.2019.09.014.

    王垒, 郭鹏飞, 杨远, 等. 原发性肝癌大数据建设初步探索[J]. 中华肝胆外科杂志, 2019, 25( 9): 695- 698. DOI: 10.3760/cma.j.issn.1007-8118.2019.09.014.
    [8]
    WANG L, ZENG JX, CHEN ZW, et al. Study of China automatic staging model of hepatocellular carcinoma based on big data platform[J/OL]. Chin J Hepatic Surg Electron Ed, 2020, 9( 2): 148- 152. DOI: 10.3877/cma.j.issn.2095-3232.2020.02.012.

    王垒, 曾建兴, 陈振伟, 等. 基于大数据平台的肝细胞癌自动化中国分期模型研究[J/OL]. 中华肝脏外科手术学电子杂志, 2020, 9( 2): 148- 152. DOI: 10.3877/cma.j.issn.2095-3232.2020.02.012.
    [9]
    MIDDLETON B, SITTIG DF, WRIGHT A. Clinical decision support: A 25 year retrospective and a 25 year vision[J]. Yearb Med Inform, 2016,( Suppl 1): S103- S116. DOI: 10.15265/IYS-2016-s034.
    [10]
    MILLS S. Electronic health records and use of clinical decision support[J]. Crit Care Nurs Clin North Am, 2019, 31( 2): 125- 131. DOI: 10.1016/j.cnc.2019.02.006.
    [11]
    SCHWARTZ JM, MOY AJ, ROSSETTI SC, et al. Clinician involvement in research on machine learning-based predictive clinical decision support for the hospital setting: A scoping review[J]. J Am Med Inform Assoc, 2021, 28( 3): 653- 663. DOI: 10.1093/jamia/ocaa296.
    [12]
    ANTONIADI AM, DU YH, GUENDOUZ Y, et al. Current challenges and future opportunities for XAI in machine learning-based clinical decision support systems: A systematic review[J]. Appl Sci, 2021, 11( 11): 5088. DOI: 10.3390/app11115088.
    [13]
    LIU HZ, LIN KY, ZENG JX, et al. Preliminary application of the integrated risk prediction platform in clinical diagnosis and treatment of hepatocellular carcinoma[J]. China Digit Med, 2022, 17( 2): 61- 65. DOI: 10.3969/j.issn.1673-7571.2022.2.014.

    刘红枝, 林孔英, 曾建兴, 等. 一体化风险预测平台在肝癌临床诊疗中的初步应用[J]. 中国数字医学, 2022, 17( 2): 61- 65. DOI: 10.3969/j.issn.1673-7571.2022.2.014.
    [14]
    LIU JF, LIU HZ, CHEN ZW, et al. Construction system and preliminary application of big data platform for liver disease and liver cancer[J]. Chin J Dig Surg, 2021, 20( 1): 46- 51. DOI: 10.3760/cma.j.cn115610-20201126-00742.

    刘景丰, 刘红枝, 陈振伟, 等. 肝病和肝癌大数据平台建设体系及其初步应用[J]. 中华消化外科杂志, 2021, 20( 1): 46- 51. DOI: 10.3760/cma.j.cn115610-20201126-00742.
    [15]
    LIU HZ, LIU JF. Application of big data and artificial intelligence in screening and diagnosis of primary liver cancer[J/OL]. Chin J Hepatic Surg Electron Ed, 2023, 12( 1): 1- 5. DOI: 10.3877/cma.j.issn.2095-3232.2023.01.001.

    刘红枝, 刘景丰. 大数据和人工智能在原发性肝癌筛查与诊断中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2023, 12( 1): 1- 5. DOI: 10.3877/cma.j.issn.2095-3232.2023.01.001.
    [16]
    CHOI GH, YUN J, CHOI J, et al. Development of machine learning-based clinical decision support system for hepatocellular carcinoma[J]. Sci Rep, 2020, 10( 1): 14855. DOI: 10.1038/s41598-020-71796-z.
    [17]
    LIU HZ, LIU JF. Application status and prospect of artificial intelligence in surgical treatment of primary liver cancer[J]. J Clin Hepatol, 2022, 38( 1): 10- 14. DOI: 10.3969/j.issn.1001-5256.2022.01.001.

    刘红枝, 刘景丰. 人工智能在原发性肝癌外科治疗中的应用现状与展望[J]. 临床肝胆病杂志, 2022, 38( 1): 10- 14. DOI: 10.3969/j.issn.1001-5256.2022.01.001.
    [18]
    FANG GX, GUO PF, FAN JH, et al. Clinical decision support system based on explainable artificial intelligence-brain of Mengchao liver disease[J]. Chin J Dig Surg, 2023, 22( 1): 70- 80. DOI: 10.3760/cma.j.cn115610-20221102-00679.

    方国旭, 郭鹏飞, 范鉴慧, 等. 基于可解释人工智能的临床决策支持系统: 孟超肝病外脑[J]. 中华消化外科杂志, 2023, 22( 1): 70- 80. DOI: 10.3760/cma.j.cn115610-20221102-00679.
  • 孟超肝病外脑2.0 在人工智能临床诊疗领域的应用初探.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(12)

    Article Metrics

    Article views (377) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return