[1] |
Institute for Health Metrics and Evaluation(IHME). GBD results[EB/OL].[ 2023-10-27]. https://vizhub.healthdata.org/gbd-results/. https://vizhub.healthdata.org/gbd-results/
|
[2] |
BANKS PA, BOLLEN TL, DERVENIS C, et al. Classification of acute pancreatitis: 2012: Revision of the Atlanta classification and definitions by international consensus[J]. Gut, 2013, 62( 1): 102- 111. DOI: 10.1136/gutjnl-2012-302779.
|
[3] |
SINONQUEL P, LALEMAN W, WILMER A. Advances in acute pancreatitis[J]. Curr Opin Crit Care, 2021, 27( 2): 193- 200. DOI: 10.1097/MCC.0000000000000806.
|
[4] |
WU Q, WANG J, QIN MB, et al. Accuracy of conventional and novel scoring systems in predicting severity and outcomes of acute pancreatitis: A retrospective study[J]. Lipids Health Dis, 2021, 20( 1): 41. DOI: 10.1186/s12944-021-01470-4.
|
[5] |
BOLLEN TL, SINGH VK, MAURER R, et al. A comparative evaluation of radiologic and clinical scoring systems in the early prediction of severity in acute pancreatitis[J]. Am J Gastroenterol, 2012, 107( 4): 612- 619. DOI: 10.1038/ajg.2011.438.
|
[6] |
WU BU, BATECH M, QUEZADA M, et al. Dynamic measurement of disease activity in acute pancreatitis: The pancreatitis activity scoring system[J]. Am J Gastroenterol, 2017, 112( 7): 1144- 1152. DOI: 10.1038/ajg.2017.114.
|
[7] |
HAN TY, CHENG T, LIAO Y, et al. Development and validation of a novel prognostic score based on thrombotic and inflammatory biomarkers for predicting 28-day adverse outcomes in patients with acute pancreatitis[J]. J Inflamm Res, 2022, 15: 395- 408. DOI: 10.2147/JIR.S344446.
|
[8] |
XU FM, CHEN X, LI C, et al. Prediction of multiple organ failure complicated by moderately severe or severe acute pancreatitis based on machine learning: A multicenter cohort study[J]. Mediators Inflamm, 2021, 2021: 5525118. DOI: 10.1155/2021/5525118.
|
[9] |
YE JF, ZHAO YX, JU J, et al. Building and verifying a severity prediction model of acute pancreatitis(AP) based on BISAP, MEWS and routine test indexes[J]. Clin Res Hepatol Gastroenterol, 2017, 41( 5): 585- 591. DOI: 10.1016/j.clinre.2016.11.013.
|
[10] |
ZHAO B, SUN SL, WANG YH, et al. Cardiac indicator CK-MB might be a predictive marker for severity and organ failure development of acute pancreatitis[J]. Ann Transl Med, 2021, 9( 5): 368. DOI: 10.21037/atm-20-3095.
|
[11] |
DEO RC. Machine learning in medicine[J]. Circulation, 2015, 132( 20): 1920- 1930. DOI: 10.1161/CIRCULATIONAHA.115.001593.
|
[12] |
JIN QW, FU LJ, YANG HX, et al. Peripheral lymphocyte count defines the clinical phenotypes and prognosis in patients with anti-MDA5-positive dermatomyositis[J]. J Intern Med, 2023, 293( 4): 494- 507. DOI: 10.1111/joim.13607.
|
[13] |
PEARCE CB, GUNN SR, AHMED A, et al. Machine learning can improve prediction of severity in acute pancreatitis using admission values of APACHE II score and C-reactive protein[J]. Pancreatology, 2006, 6( 1-2): 123- 131. DOI: 10.1159/000090032.
|
[14] |
SUN HW, LU JY, WENG YX, et al. Accurate prediction of acute pancreatitis severity with integrative blood molecular measurements[J]. Aging, 2021, 13( 6): 8817- 8834. DOI: 10.18632/aging.202689.
|
[15] |
LANGMEAD C, LEE PJ, PARAGOMI P, et al. A novel 5-cytokine panel outperforms conventional predictive markers of persistent organ failure in acute pancreatitis[J]. Clin Transl Gastroenterol, 2021, 12( 5): e00351. DOI: 10.14309/ctg.0000000000000351.
|
[16] |
THAPA R, IQBAL Z, GARIKIPATI A, et al. Early prediction of severe acute pancreatitis using machine learning[J]. Pancreatology, 2022, 22( 1): 43- 50. DOI: 10.1016/j.pan.2021.10.003.
|
[17] |
KUI B, PINTÉR J, MOLONTAY R, et al. EASY-APP: An artificial intelligence model and application for early and easy prediction of severity in acute pancreatitis[J]. Clin Transl Med, 2022, 12( 6): e842. DOI: 10.1002/ctm2.842.
|
[18] |
YUAN L, JI MY, WANG S, et al. Machine learning model identifies aggressive acute pancreatitis within 48 h of admission: A large retrospective study[J]. BMC Med Inform Decis Mak, 2022, 22( 1): 312. DOI: 10.1186/s12911-022-02066-3.
|
[19] |
İNCE AT, SILAHTAROĞLU G, SEVEN G, et al. Early prediction of the severe course, survival, and ICU requirements in acute pancreatitis by artificial intelligence[J]. Pancreatology, 2023, 23( 2): 176- 186. DOI: 10.1016/j.pan.2022.12.005.
|
[20] |
LUO Z, SHI JL, FANG YY, et al. Development and evaluation of machine learning models and nomogram for the prediction of severe acute pancreatitis[J]. J Gastroenterol Hepatol, 2023, 38( 3): 468- 475. DOI: 10.1111/jgh.16125.
|
[21] |
BUGIANTELLA W, RONDELLI F, BONI M, et al. Necrotizing pancreatitis: A review of the interventions[J]. Int J Surg, 2016, 28( Suppl 1): S163- S171. DOI: 10.1016/j.ijsu.2015.12.038.
|
[22] |
KISS S, PINTÉR J, MOLONTAY R, et al. Early prediction of acute necrotizing pancreatitis by artificial intelligence: A prospective cohort-analysis of 2387 cases[J]. Sci Rep, 2022, 12( 1): 7827. DOI: 10.1038/s41598-022-11517-w.
|
[23] |
FEI Y, GAO K, LI WQ. Artificial neural network algorithm model as powerful tool to predict acute lung injury following to severe acute pancreatitis[J]. Pancreatology, 2018, 18( 8): 892- 899. DOI: 10.1016/j.pan.2018.09.007.
|
[24] |
ZHANG J, LV YQ, HOU JY, et al. Machine learning for post-acute pancreatitis diabetes mellitus prediction and personalized treatment recommendations[J]. Sci Rep, 2023, 13( 1): 4857. DOI: 10.1038/s41598-023-31947-4.
|
[25] |
HAMEED MAB, ALAMGIR Z. Improving mortality prediction in acute pancreatitis by machine learning and data augmentation[J]. Comput Biol Med, 2022, 150: 106077. DOI: 10.1016/j.compbiomed.2022.106077.
|
[26] |
KIMITA W, BHARMAL SH, KO J, et al. Identifying endotypes of individuals after an attack of pancreatitis based on unsupervised machine learning of multiplex cytokine profiles[J]. Transl Res, 2023, 251: 54- 62. DOI: 10.1016/j.trsl.2022.07.001.
|
[27] |
YIN MY, LIANG XL, WANG ZL, et al. Identification of asymptomatic COVID-19 patients on chest CT images using transformer-based or convolutional neural network-based deep learning models[J]. J Digit Imaging, 2023, 36( 3): 827- 836. DOI: 10.1007/s10278-022-00754-0.
|
[28] |
COGAN T, COGAN M, TAMIL L. MAPGI: Accurate identification of anatomical landmarks and diseased tissue in gastrointestinal tract using deep learning[J]. Comput Biol Med, 2019, 111: 103351. DOI: 10.1016/j.compbiomed.2019.103351.
|
[29] |
CHO BJ, BANG CS, PARK SW, et al. Automated classification of gastric neoplasms in endoscopic images using a convolutional neural network[J]. Endoscopy, 2019, 51( 12): 1121- 1129. DOI: 10.1055/a-0981-6133.
|
[30] |
TONOZUKA R, ITOI T, NAGATA N, et al. Deep learning analysis for the detection of pancreatic cancer on endosonographic images: A pilot study[J]. J Hepatobiliary Pancreat Sci, 2021, 28( 1): 95- 104. DOI: 10.1002/jhbp.825.
|
[31] |
DURAK S, BAYRAM B, BAKIRMAN T, et al. Deep neural network approaches for detecting gastric polyps in endoscopic images[J]. Med Biol Eng Comput, 2021, 59( 7-8): 1563- 1574. DOI: 10.1007/s11517-021-02398-8.
|
[32] |
de GROOF AJ, STRUYVENBERG MR, FOCKENS KN, et al. Deep learning algorithm detection of Barrett's neoplasia with high accuracy during live endoscopic procedures: A pilot study(with video)[J]. Gastrointest Endosc, 2020, 91( 6): 1242- 1250. DOI: 10.1016/j.gie.2019.12.048.
|
[33] |
LIU YZ, LEI Y, FU YB, et al. CT-based multi-organ segmentation using a 3D self-attention U-net network for pancreatic radiotherapy[J]. Med Phys, 2020, 47( 9): 4316- 4324. DOI: 10.1002/mp.14386.
|
[34] |
AN P, YANG DM, WANG J, et al. A deep learning method for delineating early gastric cancer resection margin under chromoendoscopy and white light endoscopy[J]. Gastric Cancer, 2020, 23( 5): 884- 892. DOI: 10.1007/s10120-020-01071-7.
|
[35] |
FENG RW, LIU XC, CHEN JT, et al. A deep learning approach for colonoscopy pathology WSI analysis: Accurate segmentation and classification[J]. IEEE J Biomed Health Inform, 2021, 25( 10): 3700- 3708. DOI: 10.1109/JBHI.2020.3040269.
|
[36] |
SCHWENDICKE F, GOLLA T, DREHER M, et al. Convolutional neural networks for dental image diagnostics: A scoping review[J]. J Dent, 2019, 91: 103226. DOI: 10.1016/j.jdent.2019.103226.
|
[37] |
TONG T, GU JH, XU D, et al. Deep learning radiomics based on contrast-enhanced ultrasound images for assisted diagnosis of pancreatic ductal adenocarcinoma and chronic pancreatitis[J]. BMC Med, 2022, 20( 1): 74. DOI: 10.1186/s12916-022-02258-8.
|
[38] |
CHEN PT, CHANG DW, WU TH, et al. Applications of artificial intelligence in pancreatic and biliary diseases[J]. J Gastroenterol Hepatol, 2021, 36( 2): 286- 294. DOI: 10.1111/jgh.15380.
|
[39] |
HUANG SC, PAREEK A, SEYYEDI S, et al. Fusion of medical imaging and electronic health records using deep learning: A systematic review and implementation guidelines[J]. NPJ Digit Med, 2020, 3: 136. DOI: 10.1038/s41746-020-00341-z.
|
[40] |
LV ZL, LIN YX, YAN R, et al. TransSurv: Transformer-based survival analysis model integrating histopathological images and genomic data for colorectal cancer[J]. IEEE/ACM Trans Comput Biol Bioinform, 2022. DOI: 10.1109/TCBB.2022.3199244.[ Online ahead of print]
|
[41] |
SOENKSEN LR, MA Y, ZENG C, et al. Integrated multimodal artificial intelligence framework for healthcare applications[J]. NPJ Digit Med, 2022, 5( 1): 149. DOI: 10.1038/s41746-022-00689-4.
|
[42] |
WANG RJ, DAI WX, GONG J, et al. Development of a novel combined nomogram model integrating deep learning-pathomics, radiomics and immunoscore to predict postoperative outcome of colorectal cancer lung metastasis patients[J]. J Hematol Oncol, 2022, 15( 1): 11. DOI: 10.1186/s13045-022-01225-3.
|
[43] |
WANG Y, HONG Y, WANG Y, et al. Automated multimodal machine learning for esophageal variceal bleeding prediction based on endoscopy and structured data[J]. J Digit Imaging, 2023, 36( 1): 326- 338. DOI: 10.1007/s10278-022-00724-6.
|
[44] |
WANG LH, YAN DF, SHEN L, et al. Prognostic value of a CT radiomics-based nomogram for the overall survival of patients with nonmetastatic BCLC stage C hepatocellular carcinoma after stereotactic body radiotherapy[J]. J Oncol, 2023, 2023: 1554599. DOI: 10.1155/2023/1554599.
|
[45] |
HUANG JZ, XIE XH, WU H, et al. Development and validation of a combined nomogram model based on deep learning contrast-enhanced ultrasound and clinical factors to predict preoperative aggressiveness in pancreatic neuroendocrine neoplasms[J]. Eur Radiol, 2022, 32( 11): 7965- 7975. DOI: 10.1007/s00330-022-08703-9.
|