轻微肝性脑病患者经颈静脉肝内门体分流术后不同预后组肠道菌群的变化
DOI: 10.3969/j.issn.1001-5256.2021.02.016
Changes in gut microbiota after transjugular intrahepatic portosystemic shunt in cirrhotic patients with mild hepatic encephalopathy in different prognosis groups
-
摘要:
目的 对比分析肝硬化轻微肝性脑病(MHE)患者经颈静脉肝内门体分流术(TIPS)后不同预后组肠道菌群结构与术前的差异。 方法 选取2016年7月—2017年7月西京医院消化病院住院并接受TIPS治疗的28例MHE患者,分别于术前1~3 d和术后1个月收集粪便样本及采样时临床资料信息,根据术后预后不同分为3组:无HE组(n=8)、MHE组(n=12)和显性脑病(OHE)组(n=8)。对粪便样本采取16S rRNA高通量测序技术进行测序得到菌群相对丰度并在属水平使用SPSS和R语言对各组间菌群物种多样性,术后变化和变化差异展开分析。计数资料组间比较采用χ2检验,计量资料3组间比较采用Kruskal-Wallis H检验,采用Bonferroni法进行多个样本的多重比较,同组患者术前术后的比较采用Wilcoxo符号秩检验。微生物组Beta分析基于Bray Curtis距离矩阵进行主坐标分析(PCoA),使用Adonis法(PerMANOVA)对比组间差异。 结果 基于Bray Curtis距离矩阵的PCoA分析显示,仅MHE组术前和术后的beta多样性明显改变(F=2.71,P=0.049)。术后无HE组原生菌群小杆菌属、粪球菌属、瘤胃菌科某属、解黄酮菌属和狭义梭菌属丰度较术前明显升高(Z值分别为2.521、2.1、2.1、2.1和1.96,P值均<0.05);MHE组术后有害菌群颗粒链菌属(Z=2.521, P=0.012)、肠球菌属(Z=2.51, P=0.012)、链球菌属(Z=2.432, P=0.015)和罗氏菌属(Z=2.001, P=0.045)丰度较术前明显下降,但韦荣球菌属(Z=2.353, P=0.019)和巨球菌属(Z=1.955, P=0.05)丰度却明显上升; OHE组术后仅观察到韦荣球菌属丰度较术前升高(Z=2.38,P= 0.017)。3组间菌群变化量(术后丰度/术前丰度)比较差异有统计学意义[无HE组vs MHE组vs OHE组:2.00(1.11~91.61) vs 1.21(0.26~6.79) vs 0.09(0.01~0.92),χ2=6.249,P=0.043]。 结论 TIPS术后不同预后患者肠道菌群的变化有明显的差异,原生菌群丰度的升高可能对缓解HE病情有一定影响。 -
关键词:
- 肝硬化 /
- 肝性脑病 /
- 门体分流术, 经颈静脉肝内 /
- 胃肠道微生物组
Abstract:Objective To investigate the changes in gut microbiota after transjugular intrahepatic portosystemic shunt (TIPS) in cirrhotic patients with mild hepatic encephalopathy (MHE) in different prognosis groups. Methods A total of 28 MHE cirrhotic patients who were hospitalized and underwent TIPS in Xijing Hospital of Digestive Diseases from July 2016 to July 2017 were enrolled. Fecal samples and related clinical data were collected on days 1-3 before surgery and at 1 month after surgery. According to the prognosis after surgery, the patients were divided into none-hepatic encephalopathy (HE) group with 8 patients, MHE group with 12 patients, and overt hepatic encephalopathy (OHE) group with 8 patients. Fecal samples were analyzed by 16S rRNA sequencing to obtain the relative abundance of gut microbiota, and SPSS and R packages were used to analyze the biodiversity, postoperative changes, and differences in such changes of gut microbiota at the genus level between groups. The chi-square test was used for comparison of categorical data between groups; the Kruskal-Wallis H test was used for comparison of continuous data between three groups; the Bonferroni method was used for multiple comparisons of multiple samples; the Wilcoxon signed-rank test was used for comparison before and after surgery within each group. For microbiome beta-diversity analyses, a principal coordinate analysis (PCoA) was performed based on Bray-Curtis distance matrix, and the Adonis method (PerMANOVA) was used for comparison between groups. Results PCoA based on Bray-Curtis distance matrix showed that only the MHE group had a significant change in beta diversity after surgery (F=2.71, P=0.049). After surgery, the non-HE group had significant increases in the abundance of the native flora Dialister, Coprococcus, Ruminococcaceae_uncultured, Flavonifractor, and Clostridium_sensu_stricto_1 (Z=2.521, 2.1, 2.1, 2.1, and 1.96, all P < 0.05); the MHE group had significant reductions in the abundance of the harmful flora Granulicatella(Z=2.521, P=0.012), Enterococcus(Z=2.51, P=0.012), Streptococcus(Z=2.432, P=0.015), and Rothia(Z=2.001, P=0.045) and significant increases in the abundance of Veillonella(Z=2.353, P=0.019) and Megasphaera(Z=1.955, P=0.05); the OHE group only had a significant increase in the abundance of Veillonella after surgery (Z=2.38, P=0.017). There was a significant difference in the change in gut microbiota (postoperative abundance/preoperative abundance) between the non-HE group, the MHE group, and the OHE group [2.00 (1.11-91.61) vs 1.21 (0.26-6.79) vs 0.09 (0.01-0.92), χ2=6.249, P=0.043]. Conclusion There is a significant difference in the change in gut microbiota after TIPS between patients with different prognoses, and the increase in the abundance of native flora may have a certain influence on the remission of MHE. -
表 1 不同预后组术前基线特征比较
指标 无HE组(n=8) MHE组(n=12) OHE组(n=8) χ2值 P值 年龄(岁) 49.5(45.8~52.8) 54.5(49.8~59.5) 46.5(44.3~52.8) 5.28 0.07 性别[男,例(%)] 3(37.5) 6(50.0) 4(50.0) 3.08 0.61 BMI(kg/m2) 18.7(18.3~20.7) 21.6(18.6~24.1) 21.4(19.6~23.8) 4.43 0.11 肝硬化病因[HBV,例(%)] 4(50.0) 7(58.3) 7(87.5) 7.39 0.35 MELD评分 10.9(7.8~13.2) 13.4(10.0~17.5) 13.4(12.7~14.9) 4.82 0.10 Child-Pugh分级[例(%)] 2.44 0.49 A(5~6) 4(50.0) 3(12.5) 2(25.0) B(7~9) 4(50.0) 6(50.0) 5(62.5) C(10~13) 0(0) 3(12.5) 1(12.5) INR 1.4(1.1~1.6) 1.4(1.2~1.9) 1.6(1.5~1.7) 4.92 0.10 血红蛋白(g/dl) 80.0(75.5~83.8) 87.0(79.3~94.3) 80.0(59.0~92.0) 1.69 0.43 总蛋白(mg/dl) 68.2(53.1~73.9) 68.0(55.7~78.9) 66.2(54.7~68.0) 0.83 0.66 Alb(g/dl) 36.5(30.6~39.3) 34.4(28.1~37.2) 32.7(31.4~35.5) 1.10 0.58 TBil(μmol/L) 15.2(10.6~20.6) 23.6(14.7~49.6) 28.1(20.4~36.1) 4.86 0.09 AST(U/L) 21.5(13.0~40.3) 21.0(11.3~30.0) 28.5(20.3~34.8) 1.77 0.41 ALT(U/L) 30.5(20.8~42.8) 27.5(21.0~42.5) 31.0(21.5~37.5) 0.01 0.99 ALP(U/L) 97.0(73.8~117.0) 65.5(49.8~92.8) 79.0(59.8~112.3) 3.69 0.16 γ-氨基丁酸(U/L) 32.0(21.0~45.8) 23.5(14.0~56.5) 31.0(20.0~49.0) 0.63 0.73 肌酐(mg/dl) 77.5(66.5~93.8) 85.5(73.0~105.0) 72.0(68.3~95.0) 1.46 0.48 静脉血氨(μg/dl) 51.0(21.0~60.0) 37.5(23.8~60.5) 36.0(27.5~47.5) 0.29 0.86 注:MELD,终末期肝病模型。 表 2 不同预后组术前alpha多样性比较
多样性指数 无HE组(n=8) MHE组(n=12) OHE组(n=8) χ2值 P值 Ace指数 186.70(137.96~232.29) 214.69(144.20~354.14) 186.68(130.79~241.34) 0.96 0.62 Chao1指数 194.64(133.60~215.46) 203.40(138.58~352.64) 183.79(118.53~208.50) 1.03 0.60 Shannon指数 2.65(2.02~3.12) 2.95(2.56~3.95) 2.67(2.04~3.50) 1.71 0.43 Simpson指数 0.16(0.09~0.23) 0.09(0.05~0.16) 0.13(0.07~0.26) 2.46 0.29 -
[1] European Association for the Study of the Liver. EASL clinical practice guidelines for the management of patients with decompensated cirrhosis[J]. J Hepatol, 2018, 69(2): 406-460. DOI: 10.1016/j.jhep.2018.03.024 [2] ZHANG JC, WANG YG, LIN F, et al. Recent advances on the pathogenesis of hepatic encephalopathy[J/CD]. Chin J Liver Dis (Electronic Version), 2019, 11(1): 6-11. (in Chinese)张军昌, 王永刚, 林芳, 等. 肝性脑病发病机制新进展[J/CD]. 中国肝脏病杂志(电子版), 2019, 11(1): 6-11. [3] RIDOLA L, CARDINALE V, RIGGIO O. The burden of minimal hepatic encephalopathy: From diagnosis to therapeutic strategies[J]. Ann Gastroenterol, 2018, 31(2): 151-164. [4] WANG JY, ZHANG NP, CHI BR, et al. Prevalence of minimal hepatic encephalopathy and quality of life evaluations in hospitalized cirrhotic patients in China[J]. World J Gastroenterol, 2013, 19(30): 4984-4991. DOI: 10.3748/wjg.v19.i30.4984 [5] QIN N, YANG F, LI A, et al. Alterations of the human gut microbiome in liver cirrhosis[J]. Nature, 2014, 513(7516): 59-64. DOI: 10.1038/nature13568 [6] TANG SH, CHEN H, HAN GH. Association between gut microbiota and hepatic encephalopathy in patients with liver cirrhosis[J]. J Clin Hepatol, 2019, 35(5): 1109-1113. (in Chinese) DOI: 10.3969/j.issn.1001-5256.2019.05.041汤世豪, 陈辉, 韩国宏. 肠道菌群与肝硬化肝性脑病的关系[J]. 临床肝胆病杂志, 2019, 35(5): 1109-1113. DOI: 10.3969/j.issn.1001-5256.2019.05.041 [7] LU BJ, ZHAO YH, AN YT, et al. Research advances in gut microbiota in liver cirrhosis and related complications[J]. J Clin Hepatol, 2018, 34(11): 2433-2437. (in Chinese) DOI: 10.3969/j.issn.1001-5256.2018.11.037鲁冰洁, 赵亚红, 安泳潼, 等. 肠道微生物在肝硬化及相关并发症中的研究进展[J]. 临床肝胆病杂志, 2018, 34(11): 2433-2437. DOI: 10.3969/j.issn.1001-5256.2018.11.037 [8] BAJAJ JS, HEUMAN DM, HYLEMON PB, et al. Altered profile of human gut microbiome is associated with cirrhosis and its complications[J]. J Hepatol, 2014, 60(5): 940-947. DOI: 10.1016/j.jhep.2013.12.019 [9] BAJAJ JS. The role of microbiota in hepatic encephalopathy[J]. Gut Microbes, 2014, 5(3): 397-403. DOI: 10.4161/gmic.28684 [10] Chinese Society of Hepatology, Chinese Medical Association. Guidelines on the management of hepatic encephalopathy in cirrhosis[J]. J Clin Hepatol, 2018, 34(10): 2076-2089. (in Chinese) DOI: 10.3969/j.issn.1001-5256.2018.10.007中华医学会肝病分学会. 肝硬化肝性脑病诊疗指南[J]. 临床肝胆病杂志, 2018, 34(10): 2076-2089. DOI: 10.3969/j.issn.1001-5256.2018.10.007 [11] FERENCI P. Hepatic encephalopathy-Definition, nomenclature, diagnosis, and quantification: Final report of the Working Party at the 11th World Congresses of Gastroenterology, Vienna, 1998[J]. Hepatology, 2002, 35(3): 716-721. DOI: 10.1053/jhep.2002.31250 [12] ZOETENDAL EG, BEN-AMOR K, HARMSEN HJ, et al. Quantification of uncultured Ruminococcus obeum-like bacteria in human fecal samples by fluorescent in situ hybridization and flow cytometry using 16S rRNA-targeted probes[J]. Appl Environ Microbiol, 2002, 68(9): 4225-4232. DOI: 10.1128/AEM.68.9.4225-4232.2002 [13] DABARD J, BRIDONNEAU C, PHILLIPE C, et al. Ruminococcin A, a new lantibiotic produced by a Ruminococcus gnavus strain isolated from human feces[J]. Appl Environ Microbiol, 2001, 67(9): 4111-4118. DOI: 10.1128/AEM.67.9.4111-4118.2001 [14] DUNCAN SH, LOUIS P, FLINT HJ. Cultivable bacterial diversity from the human colon[J]. Lett Appl Microbiol, 2007, 44(4): 343-350. DOI: 10.1111/j.1472-765X.2007.02129.x [15] WONG JM, de SOUZA R, KENDALL CW, et al. Colonic health: Fermentation and short chain fatty acids[J]. J Clin Gastroenterol, 2006, 40(3): 235-243. DOI: 10.1097/00004836-200603000-00015 [16] NAVA GM, STAPPENBECK TS. Diversity of the autochthonous colonic microbiota[J]. Gut Microbes, 2011, 2(2): 99-104. DOI: 10.4161/gmic.2.2.15416 [17] SOKOL H, PIGNEUR B, WATTERLOT L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients[J]. Proc Natl Acad Sci U S A, 2008, 105(43): 16731-16736. DOI: 10.1073/pnas.0804812105 [18] SOKOL H, LAY C, SEKSIK P, et al. Analysis of bacterial bowel communities of IBD patients: What has it revealed?[J]. Inflamm Bowel Dis, 2008, 14(6): 858-867. DOI: 10.1002/ibd.20392 [19] BAJAJ JS, BETRAPALLY NS, HYLEMON PB, et al. Salivary microbiota reflects changes in gut microbiota in cirrhosis with hepatic encephalopathy[J]. Hepatology, 2015, 62(4): 1260-1271. DOI: 10.1002/hep.27819 [20] BAJAJ JS, RIDLON JM, HYLEMON PB, et al. Linkage of gut microbiome with cognition in hepatic encephalopathy[J]. Am J Physiol Gastrointest Liver Physiol, 2012, 302(1): g168-g175. DOI: 10.1152/ajpgi.00190.2011 [21] de CRUZ P, KANG S, WAGNER J, et al. Association between specific mucosa-associated microbiota in Crohn's disease at the time of resection and subsequent disease recurrence: A pilot study[J]. J Gastroenterol Hepatol, 2015, 30(2): 268-278. DOI: 10.1111/jgh.12694 [22] BONGAERTS GP, SCHREURS BW, LUNEL FV, et al. Was isolation of Veillonella from spinal osteomyelitis possible due to poor tissue perfusion?[J]. Med Hypotheses, 2004, 63(4): 659-661. DOI: 10.1016/j.mehy.2004.02.052 [23] ROVERY C, ETIENNE A, FOUCAULT C, et al. Veillonella montpellierensis endocarditis[J]. Emerg Infect Dis, 2005, 11(7): 1112-1114. DOI: 10.3201/eid1107.041361