糖皮质激素诱导的肿瘤坏死因子受体相关蛋白及其配体在肝脏疾病中的作用
DOI: 10.3969/j.issn.1001-5256.2021.07.051
Research advances in the role of the glucocorticoid-induced tumor necrosis factor receptor-related protein and its ligand in liver diseases
-
摘要: 糖皮质激素诱导的肿瘤坏死因子受体(GITR)属于肿瘤坏死因子受体家族, 与其特异性配体GITRL结合后, 所介导的下游信号既可以作为协同刺激分子, 促进效应T淋巴细胞增殖与细胞因子分泌; 还可以影响调节性T淋巴细胞增殖和抑制效应T淋巴细胞的功能, 从而调控效应T淋巴细胞的炎症反应与杀伤肿瘤细胞的作用。GITRL主要表达于抗原递呈细胞且有胞内结构域, 与GITR结合后, 可以通过受体/配体逆向信号从而影响抗原递呈细胞的功能。在肝脏疾病中, GITRL/GITR信号不仅与肝移植术后和基因治疗中免疫排异反应有关, 也与肿瘤免疫微环境形成、肿瘤的免疫逃逸有关。GITRL/GITR在其他肝脏疾病发生和进展中的作用仍有待进一步研究。
-
关键词:
- 肝疾病 /
- 糖皮质激素类诱导TNFR相关蛋白质 /
- 糖皮质激素类诱导TNFR相关配体 /
- 免疫调节 /
- T淋巴细胞, 调节性
Abstract: Glucocorticoid-induced tumor necrosis factor receptor (GITR) is a member of the tumor necrosis factor receptor superfamily, and after it specifically binds to GITR ligand (GITRL), the downstream signals mediated by them can not only serve as a costimulatory molecule to promote the proliferation and cytokine secretion of effector T cells, but also affect the proliferation of regulatory T cells and inhibit the function of effector T cells, thereby regulating the inflammatory response and tumor cell-killing effect of effector T cells. GITRL is mainly expressed in antigen- presenting cells and has an intracellular domain, and the binding of GITRL to GITR can affect the function of antigen-presenting cells via receptor/ligand reverse signaling. In liver diseases, GITRL/GITR signal is not only involved in immune rejection after liver transplantation and gene therapy, but also associated with the formation of tumor immune microenvironment and the immune escape of tumor. Further studies are needed to explore the role of GITRL/GITR in the development and progression of other liver diseases. -
表 1 GITRL/GITR配体-受体信号在不同的免疫细胞亚群中的表达和功能
细胞类型 表达水平 功能 CD4+ T淋巴细胞 静息状态GITR表达水平很低, 活化后高表达GITR GITRL与CD3协同刺激T淋巴细胞的活化与增殖, 发挥促炎作用 CD8+ T淋巴细胞 静息状态GITR表达水平很低, 活化后高表达GITR GITRL与CD28协同刺激T淋巴细胞的活化与增殖, 发挥促炎作用 Treg 高表达GITR GITRL抑制Treg增殖, 降低Treg抑制效应T淋巴细胞的功能, 可以诱发自身免疫性疾病, 也能够发挥抑制肿瘤生长的抗肿瘤作用 Th17 表达GITR 促进Th17增殖, 发挥促炎作用 滤泡Th(Tfh) 表达GITR 活化GITR信号可增加Tfh数量和比例, 增强Tfh应答反应与辅助抗体合成功能, 增强肿瘤特异性细胞毒性T淋巴细胞的杀伤肿瘤细胞的功能 Th9 表达GITR 活化GITR信号增强肿瘤特异性细胞毒性T淋巴细胞的应答反应 NK细胞 静息状态中等程度表达GITR, 活化后高表达GITR GITRL与IL-2、IFNα和NKG2D协同活化NK细胞
GITRL通过GITR抑制NK细胞活化与促炎因子分泌DC 静息状态不表达GITR, 活化后中/低表达GITR GITRL促进T淋巴细胞增殖, 抑制Treg形成, 发挥促炎作用 巨噬细胞 静息状态GITR表达水平很低, 活化后中/低表达GITR GITRL刺激巨噬细胞表达一氧化氮合成酶并增加一氧化氮合成, 发挥促炎作用 表 2 GITR/GITRL受体-配体逆向信号在抗原递呈细胞中的表达和功能
细胞类型 表达水平 功能 内皮细胞 静息状态高表达GITRL, 活化后GITRL表达进一步升高 GITR增加内皮细胞ICAM-1和VCAM-1的表达, 促进炎症细胞的黏附和迁移 DC 静息状态中/低表达GITRL, 活化后高表达GITRL GITR抑制DC促炎因子IL-12表达, 促进具有抑炎作用的吲哚胺2, 3-二氧化酶表达, 发挥免疫抑制作用 巨噬细胞 静息状态中/低表达GITRL, 活化后高表达GITRL GITR促进巨噬细胞促炎因子、基质金属蛋白酶9和ICAM的表达, 促进巨噬细胞的聚集和与细胞外基质的黏附 注:ICAM-1, 细胞间黏附分子; VCAM-1, 血管细胞黏附分子。 -
[1] NOCENTINI G, GIUNCHI L, RONCHETTI S, et al. A new member of the tumor necrosis factor/nerve growth factor receptor family inhibits T cell receptor-induced apoptosis[J]. Proc Natl Acad Sci U S A, 1997, 94(12): 6216-6221. DOI: 10.1073/pnas.94.12.6216. [2] GURNEY AL, MARSTERS SA, HUANG RM, et al. Identification of a new member of the tumor necrosis factor family and its receptor, a human ortholog of mouse GITR[J]. Curr Biol, 1999, 9(4): 215-218. DOI: 10.1016/s0960-9822(99)80093-1. [3] KIM JD, CHOI BK, BAE JS, et al. Cloning and characterization of GITR ligand[J]. Genes Immun, 2003, 4(8): 564-569. DOI: 10.1038 /sj.gene.6364026. [4] NOCENTINI G, RICCARDI C. GITR: A modulator of immune response and inflammation[J]. Adv Exp Med Biol, 2009, 647: 156-173. DOI: 10.1007/978-0-387-89520-8_11. [5] RICCARDI C, RONCHETTI S, NOCENTINI G. Glucocorticoid-induced TNFR-related gene (GITR) as a therapeutic target for immunotherapy[J]. Expert Opin Ther Targets, 2018, 22(9): 783-797. DOI: 10.1080/14728222.2018.1512588. [6] SHIMIZU J, YAMAZAKI S, TAKAHASHI T, et al. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance[J]. Nat Immunol, 2002, 3(2): 135-142. DOI: 10.1038/ni759. [7] KOHM AP, PODOJIL JR, WILLIAMS JS, et al. CD28 regulates glucocorticoid-induced TNF receptor family-related gene expression on CD4+ T cells via IL-2-dependent mechanisms[J]. Cell Immunol, 2005, 235(1): 56-64. DOI: 10.1016/j.cellimm.2005.07.002. [8] RONCHETTI S, ZOLLO O, BRUSCOLI S, et al. GITR, a member of the TNF receptor superfamily, is costimulatory to mouse T lymphocyte subpopulations[J]. Eur J Immunol, 2004, 34(3): 613-622. DOI: 10.1002/eji.200324804. [9] KOHM AP, WILLIAMS JS, MILLER SD. Cutting edge: Ligation of the glucocorticoid-induced TNF receptor enhances autoreactive CD4+ T cell activation and experimental autoimmune encephalomyelitis[J]. J Immunol, 2004, 172(8): 4686-4690. DOI: 10.4049/jimmunol.172.8.4686. [10] van OLFFEN RW, KONING N, van GISBERGEN KP, et al. GITR triggering induces expansion of both effector and regulatory CD4+ T cells in vivo[J]. J Immunol, 2009, 182(12): 7490-7500. DOI: 10.4049/jimmunol.0802751. [11] RONCHETTI S, NOCENTINI G, BIANCHINI R, et al. Glucocorticoid-induced TNFR-related protein lowers the threshold of CD28 costimulation in CD8+ T cells[J]. J Immunol, 2007, 179(9): 5916-5926. DOI: 10.4049/jimmunol.179.9.5916. [12] SNELL LM, MCPHERSON AJ, LIN GH, et al. CD8 T cell-intrinsic GITR is required for T cell clonal expansion and mouse survival following severe influenza infection[J]. J Immunol, 2010, 185(12): 7223-7234. DOI: 10.4049/jimmunol.0903080. [13] PEDROZA-GONZALEZ A, ZHOU G, SINGH SP, et al. GITR engagement in combination with CTLA-4 blockade completely abrogates immunosuppression mediated by human liver tumor-derived regulatory T cells ex vivo[J]. Oncoimmunology, 2015, 4(12): e1051297. DOI: 10.1080/2162402X.2015.1051297. [14] VENCE L, BUCKTROUT SL, FERNANDEZ CURBELO I, et al. Characterization and comparison of GITR expression in solid tumors[J]. Clin Cancer Res, 2019, 25(21): 6501-6510. DOI: 10.1158/1078-0432.CCR-19-0289. [15] NOWAKOWSKA DJ, KISSLER S. Ptpn22 modifies regulatory T cell homeostasis via GITR upregulation[J]. J Immunol, 2016, 196(5): 2145-2152. DOI: 10.4049/jimmunol.1501877. [16] MAHMUD SA, MANLOVE LS, SCHMITZ HM, et al. Costimulation via the tumor-necrosis factor receptor superfamily couples TCR signal strength to the thymic differentiation of regulatory T cells[J]. Nat Immunol, 2014, 15(5): 473-481. DOI: 10.1038/ni.2849. [17] TIAN J, ZHANG B, RUI K, et al. The role of GITR/GITRL interaction in autoimmune diseases[J]. Front Immunol, 2020, 11: 588682. DOI: 10.3389/fimmu.2020.588682. [18] CARRIER Y, WHITTERS MJ, MIYASHIRO JS, et al. Enhanced GITR/GITRL interactions augment IL-27 expression and induce IL-10-producing Tr-1 like cells[J]. Eur J Immunol, 2012, 42(6): 1393-1404. DOI: 10.1002/eji.201142162. [19] WANG S, SHI Y, YANG M, et al. Glucocorticoid-induced tumor necrosis factor receptor family-related protein exacerbates collagen-induced arthritis by enhancing the expansion of Th17 cells[J]. Am J Pathol, 2012, 180(3): 1059-1067. DOI: 10.1016/j.ajpath.2011.11.018. [20] KO K, YAMAZAKI S, NAKAMURA K, et al. Treatment of advanced tumors with agonistic anti-GITR mAb and its effects on tumor-infiltrating Foxp3+CD25+CD4+ regulatory T cells[J]. J Exp Med, 2005, 202(7): 885-891. DOI: 10.1084/jem.20050940. [21] SUKUMAR S, WILSON DC, YU Y, et al. Characterization of MK-4166, a clinical agonistic antibody that targets human GITR and inhibits the generation and suppressive effects of t regulatory cells[J]. Cancer Res, 2017, 77(16): 4378-4388. DOI: 10.1158/0008-5472.CAN-16-1439. [22] MA J, FENG D, WEI Y, et al. Blockade of glucocorticoid-induced tumor necrosis factor-receptor-related protein signaling ameliorates murine collagen-induced arthritis by modulating follicular helper T cells[J]. Am J Pathol, 2016, 186(6): 1559-1567. DOI: 10.1016/j.ajpath.2016.02.010. [23] OJA AE, BRASSER G, SLOT E, et al. GITR shapes humoral immunity by controlling the balance between follicular T helper cells and regulatory T follicular cells[J]. Immunol Lett, 2020, 222: 73-79. DOI: 10.1016/j.imlet.2020.03.008. [24] PEDROS C, ALTMAN A, KONG KF. Role of TRAFs in signaling pathways controlling T follicular helper cell differentiation and T cell-dependent antibody responses[J]. Front Immunol, 2018, 9: 2412. DOI: 10.3389/fimmu.2018.02412. [25] CLOUTHIER DL, ZHOU AC, WORTZMAN ME, et al. GITR intrinsically sustains early type 1 and late follicular helper CD4 T cell accumulation to control a chronic viral infection[J]. PLoS Pathog, 2015, 11(1): e1004517. DOI: 10.1371/journal.ppat.1004517. [26] KOH CH, KIM IK, SHIN KS, et al. GITR agonism triggers antitumor immune responses through IL21-expressing follicular helper T cells[J]. Cancer Immunol Res, 2020, 8(5): 698-709. DOI: 10.1158/2326-6066.CIR-19-0748. [27] KIM IK, KIM BS, KOH CH, et al. Glucocorticoid-induced tumor necrosis factor receptor-related protein co-stimulation facilitates tumor regression by inducing IL-9-producing helper T cells[J]. Nat Med, 2015, 21(9): 1010-1017. DOI: 10.1038/nm.3922. [28] KRAUSZ LT, BIANCHINI R, RONCHETTI S, et al. GITR-GITRL system, a novel player in shock and inflammation[J]. Scientific-WorldJournal, 2007, 7: 533-566. DOI: 10.1100/tsw.2007.106. [29] NARDELLI B, ZARITSKAYA L, MCAULIFFE W, et al. Osteostat/tumor necrosis factor superfamily 18 inhibits osteoclastogenesis and is selectively expressed by vascular endothelial cells[J]. Endocrinology, 2006, 147(1): 70-78. DOI: 10.1210/en.2005-0518. [30] LACAL PM, PETRILLO MG, RUFFINI F, et al. Glucocorticoid-induced tumor necrosis factor receptor family-related ligand triggering upregulates vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 and promotes leukocyte adhesion[J]. J Pharmacol Exp Ther, 2013, 347(1): 164-172. DOI: 10.1124/jpet.113.207605. [31] AGOSTINI M, CENCI E, PERICOLINI E, et al. The glucocorticoid-induced tumor necrosis factor receptor-related gene modulates the response to Candida albicans infection[J]. Infect Immun, 2005, 73(11): 7502-7508. DOI: 10.1128/IAI.73.11.7502-7508.2005. [32] GROHMANN U, VOLPI C, FALLARINO F, et al. Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy[J]. Nat Med, 2007, 13(5): 579-586. DOI: 10.1038/nm1563. [33] LEE HS, SHIN HH, KWON BS, et al. Soluble glucocorticoid-induced tumor necrosis factor receptor (sGITR) increased MMP-9 activity in murine macrophage[J]. J Cell Biochem, 2003, 88(5): 1048-1056. DOI: 10.1002/jcb.10456. [34] BAE E, KIM WJ, KANG YM, et al. Glucocorticoid-induced tumour necrosis factor receptor-related protein-mediated macrophage stimulation may induce cellular adhesion and cytokine expression in rheumatoid arthritis[J]. Clin Exp Immunol, 2007, 148(3): 410-418. DOI: 10.1111/j.1365-2249.2007.03363.x. [35] BAE EM, KIM WJ, SUK K, et al. Reverse signaling initiated from GITRL induces NF-kappaB activation through ERK in the inflammatory activation of macrophages[J]. Mol Immunol, 2008, 45(2): 523-533. DOI: 10.1016/j.molimm.2007.05.013. [36] WEI SD, LI JZ, LIU ZJ, et al. Dexamethasone attenuates lipopolysaccharide-induced liver injury by downregulating glucocorticoid-induced tumor necrosis factor receptor ligand in Kupffer cells[J]. Hepatol Res, 2011, 41(10): 989-999. DOI: 10.1111/j.1872-034X.2011.00852.x. [37] WEI S, LI J, LIAN Z, et al. Expression of glucocorticoid-induced tumor necrosis factor receptor ligand in rat graft after liver transplantation[J]. Transplant Proc, 2011, 43(5): 1971-1975. DOI: 10.1016/j.transproceed.2011.03.054. [38] WANG W, JI G, CHEN Y, et al. Changes in DNA methylation of glucocorticoid-induced tumor necrosis factor receptor and its ligand in liver transplantation[J]. Transplant Proc, 2017, 49(8): 1824-1833. DOI: 10.1016/j.transproceed.2017.06.023. [39] LIAO G, O'KEEFFE MS, WANG G, et al. Glucocorticoid-Induced TNF receptor family-related protein ligand is requisite for optimal functioning of regulatory CD4(+) t cells[J]. Front Immunol, 2014, 5: 35. DOI: 10.3389/fimmu.2014.00035. [40] LIAO G, NAYAK S, REGUEIRO JR, et al. GITR engagement preferentially enhances proliferation of functionally competent CD4+CD25+FoxP3+ regulatory T cells[J]. Int Immunol, 2010, 22(4): 259-270. DOI: 10.1093/intimm/dxq001. [41] ZHANG HH, MEI MH, FEI R, et al. Regulatory T cells in chronic hepatitis B patients affect the immunopathogenesis of hepatocellular carcinoma by suppressing the anti-tumour immune responses[J]. J Viral Hepat, 2010, 17(Suppl 1): 34-43. DOI: 10.1111/j.1365-2893.2010.01269.x. [42] ORMANDY LA, HILLEMANN T, WEDEMEYER H, et al. Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma[J]. Cancer Res, 2005, 65(6): 2457-2464. DOI: 10.1158/0008-5472.CAN-04-3232. [43] VAN BEEK AA, ZHOU G, DOUKAS M, et al. GITR ligation enhances functionality of tumor-infiltrating T cells in hepatocellular carcinoma[J]. Int J Cancer, 2019, 145(4): 1111-1124. DOI: 10.1002/ijc.32181. [44] ZHOU G, SPRENGERS D, MANCHAM S, et al. Reduction of immunosuppressive tumor microenvironment in cholangiocarcinoma by ex vivo targeting immune checkpoint molecules[J]. J Hepatol, 2019, 71(4): 753-762. DOI: 10.1016/j.jhep.2019.05.026. [45] CABO M, OFFRINGA R, ZITVOGEL L, et al. Trial Watch: Immunostimulatory monoclonal antibodies for oncological indications[J]. Oncoimmunology, 2017, 6(12): e1371896. DOI: 10.1080/2162402X.2017.1371896.
计量
- 文章访问数: 549
- HTML全文浏览量: 276
- PDF下载量: 55
- 被引次数: 0