中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 40 Issue 4
Apr.  2024
Turn off MathJax
Article Contents

Association of polymorphisms of the acetyl-coA acetyltransferase 1 gene and the melatonin receptor 1B gene with the susceptibility to nonalcoholic fatty liver disease

DOI: 10.12449/JCH240410
Research funding:

National Natural Science Foundation of China (32171277)

More Information
  • Corresponding author: XIN Yongning, xinyongning@163.com (ORCID: 0000-0002-3692-7655)
  • Received Date: 2023-08-05
  • Accepted Date: 2023-09-04
  • Published Date: 2024-04-25
  •   Objective  To investigate the association of the polymorphisms of the acetyl-CoA acetyltransferase 1 (ACAT1) gene and the melatonin receptor 1B (MTNR1B) gene with the susceptibility to nonalcoholic fatty liver disease (NAFLD).  Methods  A total of 164 healthy controls and 228 NAFLD patients were enrolled in this study. PCR and sequencing methods were used to determine the genotypes of the polymorphisms of the ACAT1 gene at the rs1044925 and rs1157651 loci and the MTNR1B gene at the rs10830963 locus, and fasting venous blood samples were collected for biochemical analysis. The t-test was used for comparison of normally distributed continuous data between groups, and the non-parametric Mann-Whitney U test was used for comparison of non-normally distributed continuous data between groups; the chi-square test was used for comparison of categorical data between groups.  Results  There were no significant differences between the NAFLD group and the healthy control group in the genotype distribution of the ACAT1 gene at the rs1044925 and rs1157651 loci and the MTNR1B gene at the rs10830963 locus (all P>0.05). The carriers of AA genotype at the rs1044925 locus of the ACAT1 gene had a significantly higher level of low-density lipoprotein than the carriers of C allele (Z=-2.08, P=0.04), and the carriers of G allele at the rs10830963 locus of the MTNR1B gene had a significantly higher level of fasting blood glucose than the carriers of CC genotype (Z=-3.01, P<0.01).  Conclusion  The polymorphisms of the ACAT1 gene at the rs1044925 and rs1157651 loci and the MTNR1B gene at the rs10830963 locus were not associated with the susceptibility to NAFLD. The rs1044925 locus of the ACAT1 gene and the rs10830963 locus of the MTNR1B gene are associated with the levels of low-density lipoprotein and fasting blood glucose, respectively.

     

  • loading
  • [1]
    DU DY, LIU C, QIN MY, et al. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma[J]. Acta Pharm Sin B, 2022, 12( 2): 558- 580. DOI: 10.1016/j.apsb.2021.09.019.
    [2]
    CHAO HW, CHAO SW, LIN H, et al. Homeostasis of glucose and lipid in non-alcoholic fatty liver disease[J]. Int J Mol Sci, 2019, 20( 2): 298. DOI: 10.3390/ijms20020298.
    [3]
    LU QR, TIAN XY, WU H, et al. Metabolic changes of hepatocytes in NAFLD[J]. Front Physiol, 2021, 12: 710420. DOI: 10.3389/fphys.2021.710420.
    [4]
    KOLIAKI C, SZENDROEDI J, KAUL K, et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis[J]. Cell Metab, 2015, 21( 5): 739- 746. DOI: 10.1016/j.cmet.2015.04.004.
    [5]
    SUNNY NE, PARKS EJ, BROWNING JD, et al. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease[J]. Cell Metab, 2011, 14( 6): 804- 810. DOI: 10.1016/j.cmet.2011.11.004.
    [6]
    TILG H, MOSCHEN AR, RODEN M. NAFLD and diabetes mellitus[J]. Nat Rev Gastroenterol Hepatol, 2017, 14( 1): 32- 42. DOI: 10.1038/nrgastro.2016.147.
    [7]
    HAAS JT, FRANCQUE S, STAELS B. Pathophysiology and mechanisms of nonalcoholic fatty liver disease[J]. Annu Rev Physiol, 2016, 78: 181- 205. DOI: 10.1146/annurev-physiol-021115-105331.
    [8]
    JONAS W, SCHÜRMANN A. Genetic and epigenetic factors determining NAFLD risk[J]. Mol Metab, 2021, 50: 101111. DOI: 10.1016/j.molmet.2020.101111.
    [9]
    WU CM, ZHANG CY, XU HL, et al. Epidemiological research and diagnosis of nonalcoholic fatty liver disease in China[J]. China Med Herald, 2023, 20( 11): 158- 161. DOI: 10.20047/j.issn1673-7210.2023.11.36.

    吴车敏, 张从玉, 徐慧丽, 等. 我国非酒精性脂肪性肝病的流行病学研究和诊断现状分析[J]. 中国医药导报, 2023, 20( 11): 158- 161. DOI: 10.20047/j.issn1673-7210.2023.11.36.
    [10]
    HAI QM, SMITH JD. Acyl-coenzyme A: Cholesterol acyltransferase(ACAT) in cholesterol metabolism: From its discovery to clinical trials and the genomics era[J]. Metabolites, 2021, 11( 8): 543. DOI: 10.3390/metabo11080543.
    [11]
    OHTA T, TAKATA K, KATSUREN K, et al. The influence of the acyl-CoA: Cholesterol acyltransferase-1 gene(-77G→A) polymorphisms on plasma lipid and apolipoprotein levels in normolipidemic and hyperlipidemic subjects[J]. Biochim Biophys Acta BBA Mol Cell Biol Lipds, 2004, 1682( 1-3): 56- 62. DOI: 10.1016/j.bbalip.2004.01.008.
    [12]
    WANG YT, WANG YH, MA YT, et al. ACAT-1 gene polymorphism is associated with increased susceptibility to coronary artery disease in Chinese Han population: A case-control study[J]. Oncotarget, 2017, 8( 51): 89055- 89063. DOI: 10.18632/oncotarget.21649.
    [13]
    YIN RX, WU DF, AUNG LHH, et al. Several lipid-related gene polymorphisms interact with overweight/obesity to modulate blood pressure levels[J]. Int J Mol Sci, 2012, 13( 9): 12062- 12081. DOI: 10.3390/ijms130912062.
    [14]
    WU YH, FISCHER DF, KALSBEEK A, et al. Pineal clock gene oscillation is disturbed in Alzheimer’s disease, due to functional disconnection from the“master clock”[J]. FASEB J, 2006, 20( 11): 1874- 1876. DOI: 10.1096/fj.05-4446fje.
    [15]
    SATO K, MENG FY, FRANCIS H, et al. Melatonin and circadian rhythms in liver diseases: Functional roles and potential therapies[J]. J Pineal Res, 2020, 68( 3): e12639. DOI: 10.1111/jpi.12639.
    [16]
    LYSSENKO V, NAGORNY CLF, ERDOS MR, et al. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion[J]. Nat Genet, 2009, 41( 1): 82- 88. DOI: 10.1038/ng.288.
    [17]
    XIA Q, CHEN ZX, WANG YC, et al. Association between the melatonin receptor 1B gene polymorphism on the risk of type 2 diabetes, impaired glucose regulation: A meta-analysis[J]. PLoS One, 2012, 7( 11): e50107. DOI: 10.1371/journal.pone.0050107.
    [18]
    MAHAJAN A, TALIUN D, THURNER M, et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps[J]. Nat Genet, 2018, 50( 11): 1505- 1513. DOI: 10.1038/s41588-018-0241-6.
    [19]
    QI YY, FAN LR, RAN DC, et al. Main risk factors of type 2 diabetes mellitus with nonalcoholic fatty liver disease and hepatocellular carcinoma[J]. J Oncol, 2021, 2021: 7764817. DOI: 10.1155/2021/7764817.
    [20]
    National Workshop on Fatty Liver and Alcoholic Liver Disease, Chinese Society of Hepatology, Chinese Medical Association: Fatty Liver Expert Committee, Chinese Medical Doctor Association. Guidelines of prevention and treatment for nonalcoholic fatty liver disease: a 2018 update[J]. J Clin Hepatol, 2018, 34( 5): 947- 957. DOI: 10.3969/j.issn.1001-5256.2018.05.007.

    中华医学会肝病学分会脂肪肝和酒精性肝病学组, 中国医师协会脂肪性肝病专家委员会. 非酒精性脂肪性肝病防治指南(2018年更新版)[J]. 临床肝胆病杂志, 2018, 34( 5): 947- 957. DOI: 10.3969/j.issn.1001-5256.2018.05.007.
    [21]
    LIU Q, LIU SS, ZHAO ZZ, et al. TRIB1 rs17321515 gene polymorphism increases the risk of coronary heart disease in general population and non-alcoholic fatty liver disease patients in Chinese Han population[J]. Lipids Health Dis, 2019, 18( 1): 165. DOI: 10.1186/s12944-019-1108-2.
    [22]
    GHOSH S, ZHAO B, BIE JH, et al. Macrophage cholesteryl ester mobilization and atherosclerosis[J]. Vascul Pharmacol, 2010, 52( 1-2): 1- 10. DOI: 10.1016/j.vph.2009.10.002.
    [23]
    MIN HK, KAPOOR A, FUCHS M, et al. Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease[J]. Cell Metab, 2012, 15( 5): 665- 674. DOI: 10.1016/j.cmet.2012.04.004.
    [24]
    KIM CH, YOUNOSSI ZM. Nonalcoholic fatty liver disease: a manifestation of the metabolic syndrome[J]. Cleve Clin J Med, 2008, 75( 10): 721- 728. DOI: 10.3949/ccjm.75.10.721.
    [25]
    LUDWIG J, MCGILL DB, LINDOR KD. Review: nonalcoholic steatohepatitis[J]. J Gastroenterol Hepatol, 1997, 12( 5): 398- 403. DOI: 10.1111/j.1440-1746.1997.tb00450.x.
    [26]
    LI Q, BAI H, FAN P, et al. Analysis of acyl-coenzyme A: cholesterol acyltransferase 1 polymorphism in patients with endogenous hypertriglyceridemia in Chinese population[J]. Chin J Med Genetics, 2008, 25( 2): 206- 210.

    李琴, 白怀, 范平, 等. 正常中国人及内源性高甘油三酯血症患者酰基辅酶A: 胆固醇酰基转移酶基因多态性的研究[J]. 中华医学遗传学杂志, 2008, 25( 2): 206- 210.
    [27]
    WU DF, YIN RX, CAO XL, CHEN WX. Association between single nucleotide polymorphism rs1044925 and the risk of coronary artery disease and ischemic stroke[J]. Int J Mol Sci, 2014, 15( 3): 3546- 3559. DOI: 10.3390/ijms15033546.
    [28]
    JI HEO, YOON DW, YU JH, et al. Melatonin improves insulin resistance and hepatic steatosis through attenuation of alpha-2-HS-glycoprotein[J]. J Pineal Res, 2018, 65( 2): e12493. DOI: 10.1111/jpi.12493
    [29]
    GASTALDELLI A. Insulin resistance and reduced metabolic flexibility: cause or consequence of NAFLD?[J]. Clin Sci(Lond), 2017, 131( 22): 2701- 2704. DOI: 10.1042/CS20170987.
    [30]
    TUOMI T, NAGORNY CLF, SINGH P, et al. Increased melatonin signaling is a risk factor for type 2 diabetes[J]. Cell Metab, 2016, 23( 6): 1067- 1077. DOI: 10.1016/j.cmet.2016.04.009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(6)

    Article Metrics

    Article views (342) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return